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Although functional magnetic resonance imaging (fMRI) is a widely

used and powerful tool for studying brain function, the quantitative

interpretation of fMRI measurements for basic neuroscience and

clinical studies can be complicated by inter-subject and inter-session

variability arising from modulation of the baseline vascular state by

disease, aging, diet, and pharmacological agents. In particular, recent

studies have shown that the temporal dynamics of the cerebral blood

flow (CBF) and the blood oxygenation level dependent (BOLD)

responses to stimulus are modulated by changes in baseline CBF

induced by various vasoactive agents and by decreases in vascular

compliance associated with aging. These effects are not readily

explained using current models of the CBF and BOLD responses.

We present here a second-order nonlinear feedback model of the

evoked CBF response in which neural activity modulates the

compliance of arteriolar smooth muscle. Within this model frame-

work, the baseline vascular state affects the dynamic response by

changing the relative contributions of an active smooth muscle

component and a passive connective tissue component to the overall

vessel compliance. Baseline dependencies of the BOLD signal are

studied by coupling the arteriolar compliance model with a previously

described balloon model of the venous compartment. Numerical

simulations show that the proposed model describes to first order

the observed dependence of CBF and BOLD responses on the baseline

vascular state.
D 2005 Elsevier Inc. All rights reserved.
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Introduction

The blood oxygenation level dependent (BOLD) signal used in

most fMRI experiments reflects local changes in deoxyhemoglobin

content, and is a complex function of dynamic changes in cerebral
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blood flow (CBF), cerebral blood volume (CBV), and the cerebral

metabolic rate of oxygen (CMRO2) (Buxton et al., 1998b).

Although significant progress has been made in characterizing

and modeling the hemodynamic response (HDR) to brain

activation (Buxton et al., 1998b; Hoge et al., 1999; Logothetis

and Wandell, 2004; Mandeville et al., 1999), the quantitative

interpretation of fMRI measurements is complicated by inter-

subject and inter-session variability caused by differences in

baseline physiology. An understanding of this dependency is

especially relevant to the application of fMRI in clinical settings

where significant variations in vascular state due to factors such as

aging, disease, medication, or diet can confound the interpretation

of the data (D’Esposito et al., 2003; Handwerker et al., 2004).

A number of recent studies have shown that the dynamic CBF

response to neural stimulus exhibits an intriguing dependence on

the baseline CBF level. Laser Doppler flow measurements

characterizing the dynamic CBF response in rats indicate that the

response slows down significantly with elevated baseline CBF due

to hypercapnia (Ances et al., 2001; Bakalova et al., 2001; Matsuura

et al., 2000a) and speeds up slightly with decreased baseline CBF

due to either hypocapnia (Matsuura et al., 2000a) or hyperoxia

(Matsuura et al., 2000b, 2001). An arterial spin labeling MRI study

in rats has reported similar results (Silva et al., 1999). In humans, a

hypocapnia-induced decrease in the rise time of the velocity

response to visual stimulation has been observed in an ultrasound

Doppler study of the posterior cerebral artery (Rosengarten et al.,

2003). Additional evidence for a change in CBF dynamics can be

inferred from BOLD measurements. Studies in visual cortex have

shown that the temporal width and time to peak of the visual

BOLD response increases with hypercapnia and decreases with

hypocapnia, while the peak amplitude of the response show the

opposite dependence (Cohen et al., 2002; Kemna and Posse, 2001).

In addition, the post-stimulus undershoot in the response resolved

more quickly with hypocapnia and appeared to be abolished with

hypercapnia (Cohen et al., 2002). Cohen et al. (2002) note that the

observed changes are perplexing, since a decrease in baseline CBF

might be expected to correspond to reduced blood velocities and

therefore a slower dynamic response (see for example, simulations
YNIMG-02954; No. of pages: 12; 4C: 3, 4, 5
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in Mildner et al., 2001). The effect of hyperoxia on the BOLD

response appears to be similar to the effect of hypocapnia and is

consistent with laser Doppler flow findings in rats (Kashikura

et al., 2001).

There is also growing evidence to suggest that the dynamics

of the HDR change with age. Some studies of the dynamic

BOLD response have described age-related increases in the

temporal parameters (e.g., latency, time to peak) of the response

(Mehagnoul-Schipper et al., 2002; Richter and Richter, 2003;

Taoka et al., 1998). However, other studies have reported no

changes with age (Buckner et al., 2000; D’Esposito et al., 1999).

The reports of increases in the temporal parameters are consistent

with the results of a functional near-infrared spectroscopy

(fNIRS) study showing broadening and less undershoot in the

time courses of oxyHB and deoxyHB in prefrontal cortex for the

elderly subjects as compared to young subjects (Schroeter et al.,

2003). Similarly, an ultrasound Doppler study of velocity

increases in the posterior cerebral artery induced by visual

stimulation found significant age-related decreases in the slopes

of the velocity response (Panczel et al., 1999). The slowing down

of the vascular dynamics may be related to the age-related

reduction in the elasticity of the arteriolar wall, which reflects a

decrease in smooth muscle and elastin components and an

increase in the less distensible collagen and basement membrane

components (Hajdu et al., 1990; Riddle et al., 2003). In addition,

the decrease in baseline CBF with age may play a role

(Bentourkia et al., 2000; Leenders et al., 1990; Marchal et al.,

1992; Martin et al., 1991). The studies described suggest the

following working observations: baseline CBF decreases with

age, vascular compliance decreases with age, and the HDR

decreases in amplitude and slows down with age. Note that in

marked contrast to the quickening of the HDR with baseline CBF

decreases induced by vasoconstrictive agents, the age-related

decrease in baseline CBF is associated with a slowing down of

the HDR.

As the field of fMRI has evolved, several dynamic models of

the HDR have been developed. Two popular models, the balloon

model and the post-arteriole windkessel model, were motivated in

part by observations of a post-stimulus undershoot in the BOLD

response and of differences between the CBF and CBV dynamic

responses (Buxton et al., 1998b; Mandeville et al., 1999). In these

models, CBF is the input that drives changes in CBV. To calculate

the BOLD response, the balloon model is coupled to a dynamic

model of the total amount of deoxyhemoglobin that reflects mass

conservation and the relation between CMRO2 and CBF (Buxton

et al., 1998b).

To generate a CBF response that could be used as an input to

the balloon model, Friston et al. (2000) introduced a linear

feedback model of the CBF response. In this model, an increase

in neural activity u(t) (equal to zero at rest) leads to an increase

in the concentration of a flow-inducing signal s through the first

order differential equation ṡ = eu(t) � kss � gf ( f � 1), where e
is the neuronal efficacy, ks is the rate constant for signal decay,

and gf is the gain constant for an auto-regulatory feedback term

that drives the CBF back to its baseline value. The flow-

inducing signal then leads to an increase in CBF through the

relation ḟ = s where f denotes CBF normalized by its baseline

value. The form of the model was motivated by observations of

an approximate linearity of the CBF response to stimulus (Miller

et al., 2001), reports of post undershoots in CBF responses

(Irikura et al., 1994), and the existence of vasomotion with a
period of about 10 s (Mayhew et al., 1996). The two first-order

equations may be combined to yield the overall second-order

equation for flow f̈ + ks ḟ + gf ( f � 1) = eu(t). The properties

of the equation can be understood by considering the impulse

response fd tð Þ ¼ 1þ e
x0

exp � kst=2ð Þ sinx0t where x0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gf � k2s =4

p
is the resonant frequency. As the impulse response

is a constant term plus a damped sinusoid, the speed of the

response depends on the resonant frequency. In order for the

baseline CBF level to speed up the impulse response in this

model, the primary effect of a decrease in CBF must be to

increase the resonant frequency, either through decreasing the

decay constant ks or increasing the feedback gain constant gf.

Within the framework of the model, however, there is not a clear

link between the values of the decay and gain constants and the

baseline vascular state.

In this paper, we present an extension of Friston’s model

that explicitly models the contribution of the baseline vascular

state to the dynamic CBF response. We refer to the modified

model as the arteriolar compliance model because it models

the link between neural activity and changes in the com-

pliance of the arterioles. The motivation and basic form of the

model are presented in the Theory section. Numerical simu-

lations are then used to demonstrate the predictive capabilities of

the model.
Theory

Nonlinear dependence of radius on compliance

The arteriolar compliance model is based on the following

simplified picture. An arteriole experiences both intravascular

pressure from the flowing blood and extravascular forces from the

surrounding tissue and extracellular fluid. The intravascular and

extravascular forces are balanced by circumferential stresses

within the arteriole wall. There is an active stress component

due to the vascular smooth muscle and a passive stress component

due to connective tissues. The active and passive components act

as two springs in parallel and together determine the overall

compliance of the arteriole. With the assumption of constant

external forces, the radius of the arteriole increases with its overall

compliance. By analogy with a spring, the more compliant the

arteriole, the more the vessel wall can stretch under a constant

force.

Over the operating range of the arteriole, the relative

contributions of the active and passive components to the

overall compliance vary. Near or below the normal operating

radius of the arteriole, most of the total stress is taken up by the

muscle, so that the muscle compliance determines the overall

compliance. As the radius saturates towards its maximum value,

the muscle stress decreases while the passive stress increases

exponentially (Davis and Gore, 1989; Lash et al., 1991). At

these larger radii, most of the stress is taken up by the passive

component, which then determines the overall compliance. Thus,

there is a nonlinear dependence of total compliance on muscular

compliance. This results in a nonlinear dependence of radius on

muscular compliance that plays a critical part in explaining the

dependence of the CBF dynamics on baseline CBF. Examples of

the relations between stress, compliance and radius are shown in

Figs. 1a and b for a 35-Am radius arteriole where the fraction k
of the total stress at rest taken up by the passive component is



Fig. 1. Mechanical properties of the arteriole. (a,b) Muscle, passive, and total stress and compliance versus radius. In (b), the total compliance is the parallel

combination of the passive and muscle compliances, with units labeled on the righthand side of the plot. (c) Radius versus compliance and exponential fit.

(d) Derivative of radius with respect to compliance. Derivative of exponential fit is also shown.
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equal to 0.15 and the maximum radius is 1.3 times the resting

radius, consistent with typical values from Davis and Gore

(1989) and Lash et al. (1991).

In Appendix A, we formalize the above arguments and derive

an expression (Eq. (A10)) for the nonlinear relation between the

arteriolar radius and smooth muscle compliance. An example of

this relation is shown in Fig. 1c.

Link between neural activity and compliance

Although the precise mechanisms of neurovascular coupling

are still poorly understood, it is generally thought that neural

activity leads to an increase in the concentration of a number of

vasoactive agents, such as nitric oxide, potassium ions, and

adenosine (Attwell and Iadecola, 2002; D’Esposito et al., 2003;

Iadecola, 2004). These agents affect muscular compliance by

modulating the phosphorylation of myosin light chains (MLC) in

the vascular smooth muscle cells (VSMC) either directly [e.g.,

through cyclic adenosine monophosphate (cAMP)] or through

changes in the intracellular concentration of calcium (Davis and

Hill, 1999; Murray, 1990; West et al., 2003). The kinetics of the

pathway from neural activity to compliance are complex and still

an area of active investigation, and so our approach is to

construct the simplest model consistent with the experimental

data. This is a second-order model consisting of a first stage

relating neural activity to changes in a vasoactive signal and a

second stage relating this signal to changes in muscular

compliance.

The first stage approximates the complex path from neural

activity to intermediate agents, such as nitric oxide and adeQ
nosine, onto final signaling agents, such as calcium, cAMP,

cyclic guanine monophosphate (cGMP), and associated protein

kinases (Davis and Hill, 1999; Murray, 1990; Somlyo and

Somlyo, 1994; West et al., 2003). We lump the effects of the

various vasodilatory and vasoconstrictive agents into a single

vasoactive signal s, and adopt the first-order form of Friston’s

model to approximate the relation between neural activity and

the change in the signal s as

ṡs ¼ eu tð Þ � kss� gf rc � 1ð Þ ð1Þ

with the flow feedback term rewritten in terms of the normalized

radius r = R/R0 where R0 is the baseline radius and the exponent

c is 2 for plug flow and 4 for laminar flow. Blood flow in

arterioles is well described by a laminar flow model, whereas

blood flow in capillaries can vary between plug and laminar flow

depending on the length of the vessel and the relative distribution

and deformation of red blood cells (Fung, 1997). The feedback

term models mechanisms that attempt to drive the system back to

its baseline state, such as the action of stretch-mediated receptors

in the vessel wall leading to an increase in the influx of calcium

into the VSMC (Davis and Hill, 1999; Martinez-Lemus et al.,

2003). It is important to note that, at rest, the vasoactive signal s

is equal to zero, reflecting the balance between competing

vasodilatory and vasoconstrictive signals. At the onset of

activation, the concentration of vasodilatory agents (e.g., nitric

oxide and cGMP) increases, leading to an increase in s. As the

flow increases, the vasoconstrictive effects (e.g., influx of

calcium) rise due to the feedback term and eventually balance

the vasodilatory effects, so that s decreases. In the case of

sustained activation, this leads to a new steady state with s again
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equal to zero. Upon the cessation of activation, the vasoactive

signal decreases, becoming initially negative as the vasodilatory

effects decrease, before increasing back to zero when the vessel

has returned to its baseline radius. Examples of these dynamics

are shown in Fig. 2a.

In the second stage, an increase in s decreases the concentration

of phosphorylated MLC, leading to a decrease in active muscle

stress (Yang et al., 2003a) and hence an increase in muscle

compliance. Approximating this with first-order kinetics yields the

relation

ċcM ¼ s ð2Þ

where cM = CM/CM,0 denotes normalized compliance with baseline

value CM,0. Combining Eqs. (1) and (2) yields

c̈M þ ksċcM þ gf r cMÞc � 1ð Þ ¼ eu tð Þð ð3Þ

where the notation r(cM) indicates that normalized radius is a

function of normalized muscle compliance.

Properties of the compliance model

The model presented above is clearly a simplified view of

the underlying mechanisms. The question is whether such a

simple model can explain the observed changes in the HDR

with aging and induced changes in baseline CBF. Because of

the nonlinear nature of the model, its properties are most readily

explored using numerical simulations as described in the

Methods section and the Results section. However, we can gain

useful insight into the model dynamics by linearizing about the

equilibrium point cM = 1 (Wilson, 1999). To facilitate this process,
Fig. 2. Model responses under hypocapnic, normocapnic, and hypercapnic cond

panel (d).
we first approximate the nonlinear relation between radius and

muscular compliance by the exponential function

RcRmax 1� a1exp � a2CMð Þð Þ ð4Þ

where Rmax is the maximum radius and a1 and a2 are constants

obtained by fits to the nonlinear relation. An example of this

approximation is shown in Fig. 1c. Substitution of this approx-

imation into Eq. (3) yields the nonlinear second-order differential

equation

c̈M þ ksċcM þ gf 1� a1exp � a2CM;0cM
�� �c

Rc
max=R

c
0 � 1

� �
¼ eu tð Þ

�
ð5Þ

Linearization about the equilibrium point then leads to the second-

order linear differential equation

c̈Mþ ksċcM þ cgf a1a2RmaxR
�1
0 CM;0exp � a2CM;0

�
cM � 1Þ ¼ eu tð Þð

�
ð6Þ

The effective feedback gain and impulse response associated with

the linear equation are

geff ¼ cgf a1a2RmaxR
�1
0 CM;0exp � a2CM;0

� �
ð7Þ

and

cM;d tð Þ ¼ 1þ e
xeff

exp � kst=2ð Þsinxeff t ð8Þ

respectively, with resonant frequency xeff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
geff � k2s =4

p
. With

hypocapnia, both R0 and CM,0 decrease with baseline CBF, so the

feedback gain and resonant frequency increase as baseline CBF

decreases. As a result, the linearized equation exhibits the property
itions. Data from Cohen et al. (2002) are shown by the plus symbols in
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that the dynamics of the impulse response speed up with a

hypocapnia-induced decrease in baseline CBF. The importance of

the nonlinear relation between radius and compliance can be

appreciated by considering a linear relation of the form R = b1CM +

b2. With the linear form, the effective gain is geff = cgf b1/(b1 + b2/

CM,0), which decreases with lower values of baseline muscular

compliance and CBF.

With age-related reductions in CBF and vascular compliance,

the maximal radius Rmax, initial radius R0 and baseline total

compliance all decrease, reflecting an increase in the passive

stress fraction (Hajdu et al., 1990). With these changes, we find

empirically that the constant terms a1 and a2 also decrease

(e.g., calculations used for Fig. 3). This leads to a decrease in

the feedback gain, because the term a1a2Rmax exp(�a2CM,0)

tends to decrease more quickly than the term R0
�1 CM,0

increases.

The steady-state response of the compliance model can be

obtained by setting the derivatives in Eq. (3) equal to zero and

keeping in mind the saturation of the radius. The steady-state

fractional change in CBF is then given by

fSS � 1 ¼ eu=gf for R0 1þ eu=gf
� �1=c

VRmax

Rmax=R0ð Þc � 1 otherwise

�
ð9Þ

where the subscript SS denotes steady state. Thus, the model

predicts that the fractional change in CBF is linearly related to the

neural activity when the operating range of the vessel is such that

its vessel radius is always less than the maximal radius. If the

baseline CBF is greatly elevated, the fractional change in CBF can

be limited by the inability of the arteriole to expand beyond its

maximum radius.
Fig. 3. (a) Stress versus radius for young and old subject. (b) dR/dCM v
Balloon model

The compliance model provides the link between neural

activity and CBF. The BOLD response depends not only on

dynamic changes in CBF but also on changes in cerebral blood

volume (CBV) and the cerebral metabolic rate of oxygen

(CMRO2). We use the balloon model with viscoelastic terms to

model the dynamic relation between CBF, CBV, and CMRO2 and

to determine the total volume of deoxyhemoglobin and its impact

on the magnetic resonance signal (Buxton et al., 1998b; Obata et

al., 2004). A summary of the form of the balloon model used in

this paper is provided in Appendix B.
Methods

Modeling of carbon dioxide experiments

Numerical simulations were used to test the predictive

capability of the compliance model. To demonstrate the effects

of baseline CBF changes, we modeled the carbon dioxide

experiments described in Cohen et al. (2002). The results of that

study show good qualitative agreement with those of a similar

human study by Kemna and Posse (2001) and an animal study by

Matsuura et al. (2000a). We assumed normocapnic parameter

values for baseline venous volume fraction, oxygen extraction

fraction, and Grubb’s law constant of V0 = 0.025, E0 = 0.4, and a =

0.38, respectively (An and Lin, 2002; Grubb et al., 1974). The

normocapnic transit time was calculated from the central volume

principle, s0 = V0 /CBF (Stewart, 1894) assuming an average
ersus normalized radius. (c,d) Model CBF and BOLD responses.



Table 2

Description of model parameters that were adjusted to reflect either carbon

dioxide level-related or age-related changes in the normalized baseline

cerebral blood flow f0 = CBF0 /CBF0,YN where CBF0,YN denotes baseline

CBF for normocapnia in the young state

Parameter Normocapnia/

Young

Hypocapnia Hypercapnia Old

CBF0 /CBF0,YN 1.0 0.8 1.3 0.8

R0 (Am) 35.0 33.1 37.4 33.1

h0 (Am) 7.0 7.33 6.62 6.62

k 0.15 0.15 0.15 0.25

CM,0

(1/mm Hg)

0.012 0.011 0.014 0.013

CTOT,0

(1/mm Hg)

0.00956 0.00954 0.00958 0.00856

V0 0.025 0.023 0.028 0.023

E0 0.4 0.5 0.31 0.4

s0 (s) 2.5 2.87 2.13 2.87

Initial radius is R0 = R0,YN f 0
1/c where R0,YN is the initial radius for the

young normocapnic state and c = 4 for laminar flow. The initial wall

thicknesses h0 for the hypocapnic and hypercapnic states were computed

using the incompressibility constraint in Eq. (A2), whereas the initial wall

thickness for the old state was assumed to be 20% of R0. The passive stress

fraction k at rest is used to generate the stress versus radius operating curves

for the young and old states. It therefore corresponds to the stress fraction

for the normocapnic condition in either the young or old state. Initial

muscular compliance CM,0 and total compliance CTOT,0 for each state were

calculated from Eqs. (A5) and (A10) with appropriate substitutions. The

resting venous volume fraction V0 was determined for each state with a

Grubb’s law relation V0 = (0.025) f 0
a. With the assumption of no change in

baseline CMRO2 between carbon dioxide levels, the resting oxygen fraction

E0 for each state is E0 = E0,YN/f0 where E0,YN denotes the young

normocapnic value. Reflecting the assumed decrease in CMRO2 with age,

the extraction fraction for the aged state is equal to that for the young

normocapnic state. The resting transit delay s0 in each state reflects the

central volume principle s0 = V0 /CBF0.
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baseline CBF of 60 ml/min-100 ml of tissue (equivalent to a flow

rate of 0.01 s�1) (An and Lin, 2002; Obata et al., 2004). The

coupling constant (defined in Eq. (A14)) between the fractional

change in CBF and the fractional change in CMRO2 was assumed

to be n = 3 across all levels of the partial pressure of carbon

dioxide (PaCO2) (Davis et al., 1998; Hoge et al., 1999; Kastrup et

al., 2002). We also assumed that the baseline rate of oxygen

metabolism CMRO2,0 did not vary with PaCO2 (Hoge et al., 1999).

In addition, we assumed that the intravascular pressure, Grubb’s

law constant, and flow exponent (c = 4 corresponding to laminar

flow) did not vary across conditions (summarized in Table 1).

To determine the nonlinear relationship between arteriolar

radius and the muscular compliance (Eq. (A10)), we assumed an

intravascular pressure of 45 mm Hg with a normocapnic baseline

arteriole radius and wall thickness of 35 and 7 Am, respectively

(Fung, 1997). A reference radius, required for the definition of the

circumferential strain, was selected to be half of the resting radius.

The fraction k of stress in the passive element at the resting radius

was set to 0.15. It is important to note that in our model, we assume

that the relation between radius and muscular compliance is

determined by the normocapnic parameters, with changes in

carbon dioxide level leading to different initial starting points on

this operating curve.

Based on previous studies relating PaCO2 to baseline CBF, the

baseline CBF values under hypercapnia and hypocapnia were

estimated to be 130% and 80%, respectively, of the normocapnic

baseline value (Ito et al., 2003; Rostrup et al., 2002). For each level

of PaCO2, the following model parameters were adjusted from

their normocapnic value to reflect the change in baseline CBF:

initial radius R0, initial wall thickness h0, baseline blood volume

fraction V0, baseline oxygen extraction fraction E0, baseline transit

time s0, baseline muscular compliance CM,0, and baseline total

compliance CTOT,0. The values of the adjusted parameters and

details of the adjustment process are provided in Table 2. BOLD

signal parameters for each PaCO2 level were then determined from

the adjusted values using equations presented in Appendix B.

Model simulations utilized the full form of the nonlinear

relation between compliance and radius, as described by Eq. (A10).

We constructed a lookup table to relate radius to compliance

because of difficulty in inverting the closed form relation. The table

was constructed with a radius step size of 0.01 Am and linear

interpolation was used for values between steps. Simulation of the

dynamic equations utilized a central Euler approximation of the

coupled differential equations with a time step of 0.01 s. In fitting

the model to the carbon dioxide data, the model parameters

discussed above and summarized in Tables 1 and 2 were treated as

constants, while the following parameters were treated as

unknowns: neuronal efficacy e, signal decay constant ks, signal

feedback constant gf, normalized maximum radius rmax = Rmax /Rn

where Rn is the normal operating radius corresponding to the

normocapnic state, and viscoelastic time constants s+ and s�. The
unknown parameters were constrained to be the same across the
Table 1

Model parameters that were held constant across all model simulations

Parameter Variable name Value

Grubb’s constant a 0.38

CMRO2 and CBF coupling constant n 3

Flow exponent c 4

Intravascular pressure (mm Hg) Pi 45
different carbon dioxide levels. Estimation of the unknown model

parameters consisted of a two-step process. In the first step, model

responses were generated over a coarse grid of parameter values

with the range for each parameter shown in Table 3. The mean-

squared error was then calculated between the data and the model

responses, with the error at each level of PaCO2 normalized by the

power of the response. The parameter values that minimized the

normalized mean-squared error summed over all levels were then

used as initial estimates for the second step in which a constrained

descent-based algorithm (fmincon function in MATLAB, Math-

works Inc., Natick, MA) was employed to obtain the final

parameter estimates.

Modeling of aging effects

To model the effects of an age-related reduction in vascular

compliance, we set the model parameters for the young response

equal to those of the normocapnic condition described in the

previous section. For the aged response, we assumed a decrease of

20% in the baseline CBF and increased the fraction k of passive

stress at rest from 0.15 to 0.25 of the total stress to reflect the

reduction in the elasticity of the arteriolar wall resulting from the

increase in the less distensible collagen and basement membrane

components (Hajdu et al., 1990; Riddle et al., 2003). Initial radius

R0, baseline blood volume fraction V0, and baseline transit time s0
were adjusted to reflect the change in baseline CBF as described in



Table 3

Model parameters that were estimated with a least squares fit to the data of

Cohen et al. (2002)

Parameter Variable

name

Constrained

range

Estimated

value

Neuronal

efficacy (1/s2)

e 0–1 0.57

Decay constant

(1/s)

ks 0–2 1.38

Feedback gain

constant (1/s2)

gf 0–2 0.36

Viscoelastic time

constant—inflation (s)

s+ 0–30 0.17

Viscoelastic time

constant—deflation (s)

s� 0–30 11.35

Maximum normalized

radius

Rmax/Rn 1.2–1.30 1.30

The maximum normalized radius is referenced to the normal operating

radius Rn, which is defined as the normocapnic radius in either the young or

old state. Details of the fitting process are described in the Methods section.

Note that the simulations presented in Figs. 2 and 3 use the estimated values

for all conditions (i.e., these model parameters do not vary across

conditions).
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Table 2. The baseline oxygen extraction fraction E0 was held

constant with age, consistent with studies showing that the baseline

rate of oxygen metabolism CMRO2,0 mirrors the age-related CBF

decrease (Leenders et al., 1990; Pantano et al., 1984). The coupling

constant between changes in CBF and CMRO2 was assumed to be

independent of age. The wall thickness was set to 20% of the

resting radius, reflecting the assumption that the ratio of wall

thickness to radius does not change with age. As shown in Fig. 3a,

these parameter changes result in an upward and leftward shift of

the total stress versus radius curve, as compared to the young

curve. Reflecting this shift, the baseline total compliance CTOT,0

exhibits an age-related decrease (see Table 2). The baseline

muscular compliance CM,0, however, shows an age-related

increase since the muscle component accounts for a smaller

fraction of the total stress in the aged state as compared to the

young state. The model simulations for the aged state were

performed using these adjusted parameters and the estimated

model parameters obtained from the carbon dioxide data. In other

words, it was assumed that the neuronal efficacy e, signal decay
constant ks, signal feedback constant gf, normalized maximum

radius rmax = Rmax /Rn where the normal operating radius Rn is

equal to the age-adjusted R0, and viscoelastic time constants s+ and
s� did not change with age.
Results

As shown in Fig. 2d, the simulated BOLD responses show

good agreement with the data from the carbon dioxide experi-

ments. Correlation of the model responses with the data yielded a

correlation coefficient of 0.99. With hypercapnia the overall BOLD

response is slowed, exhibiting an increase in the temporal width, a

decrease in the peak amplitude, a reduction in the post-stimulus

undershoot, and an increase in the rise time with respect to the

normocapnic response. In contrast, hypocapnia leads to a decrease

in the temporal width, an increase in the peak amplitude, and a

decrease in the rise time. The model responses underestimate the

amplitudes of both the peak of the response and the post-
undershoot response for the normocapnic data. This partly reflects

the fact that the viscoelastic time constants were maintained

constant across conditions.

The compliance model parameters describing neuronal efficacy

e, signal decay constant ks, and flow dependent feedback gain gf
were estimated to be 0.57 s�2, 1.38 s�1, and 0.36 s�2, respectively.

These values are similar to the corresponding average values of

0.54 s�2, 0.65 s�1, and 0.41 s�2 reported for the linear feedback

model in Friston et al. (2000). The balloon model viscoelastic time

constants were found to be 0.17 s during inflation and 11.35 s

during deflation. The normalized maximum radius was estimated

to be 1.30.

It is important to stress that the model responses were obtained

with the signal decay and feedback gain parameters held constant

across the levels of carbon dioxide. Thus, the speeding up or

slowing down of the response was due primarily to the change in

baseline compliance, which then modulates the effective feedback

gain (see Theory section). This is in marked contrast with the linear

feedback model, which, as discussed in the Introduction, requires a

change in either the signal decay or feedback gain parameter in

order to slow down or speed up the response in a manner consistent

with the experimental data. In addition, although the parameters

estimated for the compliance model show good agreement with

those previously reported for the linear feedback model, these

models are not equivalent, even for the normocapnic state. The

feedback term in the compliance model exhibits a nonlinear and

dynamic dependence on CBF, while the feedback term in the linear

feedback model is assumed to be a constant.

A detailed examination of the various responses in Fig. 2 is

useful for understanding the dependence on baseline CBF. As

shown in Fig. 2a, the initial slopes of the vasoactive signal

responses are independent of the baseline state, reflecting the fact

that the signal decay and flow feedback terms in Eq. (1) are

initially small so that the time derivative of the vasoactive signal is

proportional to neural activity. Similarly, the initial slopes of the

normalized muscle compliance curves are independent of the

baseline state. In contrast, the slopes of the normalized CBF and

BOLD responses in Figs. 2c and d, respectively, exhibit a baseline

dependence that reflects the nonlinear relation between the radius

and smooth muscle compliance described by Eq. (A10). To better

understand this dependence, we consider the derivative dR/dCM of

radius with respect to muscular compliance. Due to the nonlinear

relation between radius and compliance, this derivative also

exhibits a nonlinear dependence on muscular compliance, as

shown in Fig. 1d. At lower baseline muscular compliance values,

corresponding to lower baseline CBF with hypocapnia, dR/dCM is

elevated with respect to the normocapnic condition. Conversely, at

higher baseline muscular compliance values, corresponding to

elevated baseline CBF with hypercapnia, dR/dCM is reduced. As a

result, the same fractional change in muscular compliance under

hypocapnia will result in a larger fractional changes in radius and

CBF as compared to the normocapnic condition, while under

hypercapnia the percent CBF change is reduced.

After its initial rise, the vasoactive signal decreases more

quickly under hypocapnia and more slowly under hypercapnia. In

the hypocapnic condition, the increased fractional change in CBF

leads to a larger flow dependent feedback term that drives the

vasoactive signal back to zero more quickly. Referring back to the

insight gained from the linearization analysis, we also note that the

larger feedback term corresponds to a higher resonant frequency in

the linearized form of the model. In contrast, the feedback term is
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smaller under hypercapnia and the vasoactive signal moves more

slowly toward the baseline value. Because of the slower decrease

of the vasoactive signal, the normalized muscular compliance

reaches a larger value in the hypercapnic condition as compared to

the normocapnic and hypocapnic states. However, as shown by the

curves in Fig. 2c, the greater percent change in compliance does

not translate into a larger percent change in CBF. Instead, the

hypercapnic response exhibits the smallest percent CBF increase,

reflecting the lower value of dR/dCM. The peak values of the

normalized flow during normocapnia, hypocapnia, and hyper-

capnia are 1.95, 2.25, and 1.60, respectively. For comparison, we

find from Eq. (9) that the normocapnic and hypocapnic normalized

steady state flows are both given by 1 + eu/gf = 2.6 (assuming a

step input u = 1), while the hypercapnic steady-state response is

given by (Rmax /R0)
c = 2.2.

After the stimulus has ended, the vasoactive signal becomes

negative, leading to a decrease in muscular compliance. Because

of the larger flow feedback term, the hypocapnic vasoactive

signal and compliance responses resolve the most quickly. This is

also reflected in the CBF and BOLD responses. The simulated

CBF responses under normocapnia and hypocapnia exhibit a

post-stimulus undershoot that is not observed in the slower

response under hypercapnia. The post-stimulus undershoot in the

hypercapnic BOLD response is minimal, indicating a similarity

between the time courses of the post-stimulus CBF and CBV

responses (Buxton et al., 1998b; Mandeville et al., 1999). In

contrast, the post-stimulus undershoots in the hypocapnic and

normocapnic BOLD responses reflect the contributions of the

CBF undershoots and the relative mismatch of the CBF and CBV

responses.

The stress versus radius curves for young versus aged

conditions are shown in Fig. 3a. The total stress is slightly

increased in the aged condition, reflecting a reduction in the

normal resting radius and wall thickness with intravascular

pressure held constant between conditions. The passive stress

curves exhibit an age-related shift similar to that described in

Hajdu et al. (1990), with a smaller maximum radius and a

larger fraction of passive stress in the aged state. The increased

passive fraction makes the vessel less responsive to changes in

muscular compliance. This is reflected in the curves of Fig. 3b

showing a downward shift in the derivative dR/dCM with aging.

The age-related shift results in a smaller increase in radius and

CBF for a given increase in muscular compliance. The smaller

increase in CBF leads to a smaller flow-dependent feedback

term and hence a slower response in the aged state. These

effects are reflected in the CBF responses of Fig. 3c, with the

aged response exhibiting a smaller amplitude and slower

dynamics as compared to the young response. The BOLD

response shown in Fig. 3d inherits these features. Additional

numerical simulations (not shown) indicate that simply lowering

baseline CBF without also increasing the passive stress fraction

does not significantly slow down the responses, because this

merely shifts the operating curve (stress vs. radius) of the

arteriole as opposed to changing the shape of the curve. In

addition, as described in the Methods section, the simulations

were performed with the assumption that CMRO2 decreases with

age so that the baseline oxygen extraction fraction E0 does not

change with age. With the alternative assumption that CMRO2

remains constant with age, E0 would increase, and the amplitude of

the aged BOLD response would be greater than that of the model

response shown.
Discussion

We have presented a nonlinear dynamic model linking changes

in neural activity to changes in arteriolar compliance and CBF. The

compliance model may be considered an extension of the linear

dynamic model proposed in Friston et al. (2000). In the present

model, the vasoactive signal modulates arteriolar muscular com-

pliance as opposed to directly modulating CBF as in the prior

model. Changes in total arteriolar compliance then lead to changes

in vessel radius and CBF. The total compliance is modeled as the

parallel combination of an active component representing smooth

muscle and a passive component representing connective tissue.

This results in a nonlinear relation between radius and smooth

muscle compliance. At smaller radii, the total compliance is

determined primarily by the smooth muscle compliance, so that

neurally induced changes in muscle compliance lead to relatively

large changes in vessel radius. At larger radii, the total compliance

is determined primarily by the passive component so that changes

in muscle compliance are less effective at modulating the vessel

radius.

Using numerical simulations, we have shown that the

compliance model predicts to first order the observed changes in

the temporal dynamics of the CBF and BOLD responses as a

function of baseline CBF. The model also predicts the slowing

down of the responses with age-related decreases in vascular

compliance.

Although the compliance model in its present form provides

relatively good fits to experimental observations, it is clearly a

simplification of the underlying mechanisms. Further experimental

and theoretical work is required to develop more accurate and

complex models. For example, although the output of the

compliance model is CBF, most of the currently available obserQ

vations revealing baseline vascular effects use measurements of the

BOLD response. This is in part because of the lower signal-to-

noise ratios (SNR) exhibited by present methods for measuring

CBF, as compared to methods for measuring BOLD. Detailed

measurements of dynamic CBF responses as a function of baseline

CBF would allow for a more direct validation of the compliance

model. In addition, in vitro studies of isolated arterioles and in vivo

studies of CBF responses in animals, using invasive methods that

cannot be applied to humans, would be useful for more fully

revealing the mechanisms underlying the effects of the baseline

vascular state.

The current model employs a first stage linking neural activity

to a vasoactive signal and a second stage linking to the vasoactive

signal to changes in muscular compliance. Further development

of the model would lead to more accurate descriptions of the

pathways in each stage. For example, the first stage involves

initial pathways from neural activity to intermediate vasoactive

agents, such as nitric oxide, and secondary pathways from the

intermediate agents to final signaling agents, such as calcium.

Thus, the next level of model development could entail modeling

the first stage as the cascade of two first order systems. A recently

presented biophysical model linking calcium to muscular com-

pliance (Yang et al., 2003a,b) may provide useful insights for

modifying the second stage of the compliance model. This model

integrates a large body of current knowledge about the electro-

chemistry and chemo-mechanics of the vascular smooth muscle

cell, and has been shown to fit experimental measurements of the

myogenic response in isolated cerebral arterioles. In its current

state, the model is probably too complex (23 state variables and
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roughly 50 assumed constants) to robustly model dynamic

responses. However, numerical simulations of the biophysical

model could be useful in exploring further developments of the

second stage of the compliance model. For example, the present

model might be expanded to incorporate a description of the

phosphorylation of the myosin light chains.

While the compliance model is the primary focus of this paper,

the balloon model plays an important role in testing the predictions

of the compliance model with experimental BOLD observations.

Although as discussed above, CBF measurements are preferable

for direct validation of the compliance model, BOLD measure-

ments are likely to play an important role in further development of

the model, due to their better SNR and temporal resolution. In

addition, the widespread use of BOLD measurements in fMRI

studies makes it critical to understand the effect of the baseline

vascular state on the BOLD responses. In the current form of the

balloon model, we have assumed a tight coupling between CBF

and CMRO2 (Eq. (A14)) and also assumed that CMRO2 does not

change with carbon dioxide level. Recently, Zheng et al. (2002)

have proposed a dynamic model that takes into account the

modulatory effect of tissue oxygenation on the coupling between

CBF and oxygen delivery. The model appears to yield a better

prediction of the dynamic CMRO2 response to neural stimulus and

also provides a prediction of the observed CMRO2 response in

anesthetized rats to hypercapnia. The incorporation of the dynamic

oxygen delivery model may therefore improve the predictive

capability of the combined compliance and balloon model

presented here. A reformulation of the viscoelastic properties of

the balloon model may also lead to better predictions. In fitting the

results of the carbon dioxide experiments, we found that it was

difficult to simultaneously fit the post-stimulus undershoot of the

BOLD response under all baseline conditions (see Fig. 2). A better

fit may be achievable with a model that incorporates the effect of

baseline CBV and venous compliance on the dynamics of the

venous compartment.

In this paper, we have focused on the structure of the

compliance model and its ability to predict the effect of the

baseline vascular state on the hemodynamic response to stimulus.

The estimation of model parameters was achieved using a two-

step procedure consisting of a global minimization over a coarse

grid followed by a conventional descent based algorithm. This

approach may not be optimal from the point of view of

computational efficiency or robustness. Friston (2002) and Friston

et al. (2003) have applied a Bayesian identification scheme to the

combination of the second-order linear feedback model (described

in the Introduction) with the balloon model. This scheme utilizes

the expectation-maximization algorithm for estimating the condi-

tional or posterior distribution of the model parameters. The

inclusion of priors in the estimation procedure enables robust and

rapid convergence of the estimation process. In addition, the

conditional densities provided by a Bayesian scheme enable

inference about the dependencies between different model param-

eters. It is likely, therefore, that the application of a Bayesian

scheme to the compliance model would improve the robustness of

the estimation process and lead to a better understanding of the

interdependence and relative importance of the different model

parameters. Finally, an extension of the Bayesian framework to

examine interactions among different brain regions has recently

been presented in the form of dynamic causal models (Friston et

al., 2003). Incorporation of the compliance model into the current

dynamic causal model structure could prove useful in examining
the effect of the baseline vascular state on the effective connectivity

between brain areas.
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Appendix A. Radius and muscular compliance

In this section, we show that there is a nonlinear relation

between arteriolar radius and the compliance of the vascular

smooth muscle. We begin with the force balance equation for a

cylindrical thick walled vessel

RPi � Rþ hð ÞPe ¼ rM þ rP þ rVð Þh ðA1Þ

where Pi and Pe are the intravascular and extravascular pressures,

respectively; rM, rP, and rV are muscular, passive, and viscoe-

lastic stress terms, respectively; and h is the wall thickness (Ursino,

1991). We assume that the vessel wall is incompressible so that the

wall thickness satisfies the constraint

h ¼ � R m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ 2R0h0 þ h20

q
ðA2Þ

where R0 and h0 are the initial values of the inner radius and wall

thickness. With this relationship, the vessel wall gets thinner as the

radius increases. To obtain a steady-state relation between

compliance and radius, we may neglect the viscoelastic stress

term, which is proportional to the rate of change of the radius.

Because of the lack of data on the extravascular pressure exerted

by the surrounding tissue, we neglect this term to simplify our

presentation. Choosing a constant value for this term would not

change the overall approximation that we derive.

With the above assumptions, the total stress can be expressed as

rTot ¼ rP þ rM ¼ Pi

h
R: ðA3Þ

This is analogous to two springs acting in parallel in which the

overall stress is the sum of the stresses in each individual element,

and the individual strains are equal to the total strain. In contrast,

two springs in series would experience equal stresses and the

overall strain would be equal to the sum of the individual strains at

each spring (Fung, 1994).

The total compliance of the arteriole is defined as

CTot ¼
ETot

rTot � rTot;Ref
ðA4Þ

where rTot is defined as a function of radius in Eq. (A3), rTot,Ref is

the stress at a reference radius Rref; and the Lagrangian finite strain

term is ETot = (R2/Rref
2 � 1)/2 (Fung, 1993). The reference radius is

chosen to be smaller than the lowest radius of interest so that all

stresses and strains are positive. Because the total stress is the sum

of the passive and muscle stresses, the total compliance may also

be expressed as the parallel combination

CTot ¼
CPCM

CP þ CM

ðA5Þ



Y. Behzadi, T.T. Liu / NeuroImage 25 (2005) 1100–1111 1109
of a muscle compliance term CM and passive compliance term CP.

These are defined as

CM ¼ ETot

rM � rM;ref
; CP ¼ ETot

rP � rP;ref
ðA6Þ

where rM,Ref and rP,Ref are the respective stresses at the

reference radius and rTot,Ref = rP,Ref + rM,Ref. With these

definitions and the relation in Eq. (A3), Eqs. (A4) and (A5) are

mathematically equivalent. Note that in the parallel combination of

compliances in Eq. (A5), the smaller compliance dominates the

total compliance. This is analogous to the less compliant spring

dominating the overall compliance when two springs are in

parallel.

From Eqs. (A3) and (A6), we can express muscular compliance

as a function of the vessel radius and passive stress

CM ¼ ETot

Pi

R

h
�

Rref

href

�
� rP � rP;Ref

� �
:

� ðA7Þ

It has been shown that passive stress is well modeled as an

exponential function of radius

rP ¼ rP;0exp kPRð Þ ðA8Þ

where rP,0 and kP are empirical constants (Fung, 1997).

Estimation of these constants is based on the following

observations: (a) the ratio of the stresses in the elastic and

muscle elements as a function of radius is conserved across

various orders of the arteriole tree; (b) at the normal operating

point radius Rn, 80–90% of the total tension is within the muscle

element; and (c) nearly all the stress is exerted by the passive

element when the vessel is at its maximum radius Rmax (Davis

and Gore, 1989; Lash et al., 1991). Application of the boundary

conditions at Rn and Rmax in conjunction with Eq. (A3) for the

total stress yields

rP ¼ PikRn

hn

 
Rmaxhn

kRnhmax

! R�Rn
Rmax�Rn

Þð
ðA9Þ

where k is the fraction of total stress in the passive element

at Rn, and hn and hmax are the vessel wall thickness at Rn

and Rmax, respectively. Substitution of Eq. (A9) into Eq. (A7)

yields an expression for muscular compliance as a function of

radius

CM ¼
1
2

�
R2

R2
ref

� 1

�
Pi

�
R

h
� Rref

href

�
� PikRn

hn

 �
Rmaxhn

kRnhmax

�� R�Rn
Rmax�Rn

�
�
�

Rmaxhn

kRnhmax

�� Rref �Rn

Rmax�Rn

�!

ðA10Þ

Assuming an intravascular pressure of 45 mm Hg with a normal

operating point radius and wall thickness of 35 and 7 Am,

respectively, we use Eq. (A10) to plot the relation between radius

and muscle compliance in Fig. 1c. Additionally, the reference

radius was selected to be half of the resting radius with k and Rmax/

Rn set to 0.15 and 1.3, respectively. This relation is fairly well

approximated by the exponential form R = Rmax (1 � a1e
�a2Cm),

also shown in the Fig. 1c.
Appendix B. Balloon model

In the balloon model with viscoelastic effects, the venous

compartment is treated as a distensible balloon (Buxton et al.,

1998b). The flow into the balloon is determined by the compliance

model, while the flow out of the balloon is modeled as

fout vð Þ ¼ v1=a þ svv̇v ðA11Þ

where v denotes the venous volume normalized by its initial value,

sv is the viscoelastic time constant (equal to s+ and s� during

inflation and deflation, respectively), and a is an empirical constant

that determines the steady-state power law relation between flow

and volume (Buxton et al., 1998a; Grubb et al., 1974). The flow

and volume dynamics follow the mass conservation relation

s0v̇v ¼ f � fout vð Þ ðA12Þ

where s0 is the mean transit time to traverse the venous

compartment at rest.

The equation for mass conservation of deoxyhemoglobin in the

balloon is

s0q̇q ¼ f
E f ;E0ð Þ

E0

� fout vð Þ q
v

ðA13Þ

where q is the total deoxyhemoglobin content normalized by its

initial value, E0 is the net extraction fraction of oxygen at rest, and

E( f, E0) is the extraction fraction as a function of flow and E0. An

expression for E( f, E0) is obtained by assuming a linear coupling

n ¼ DCBF=CBF0
DCMRO2=CMRO2;0

¼ f � 1

m� 1
ðA14Þ

between the fractional change in CBF and the fractional change in

CMRO2, where n is an empirical coupling constant and m is

CMRO2 normalized by its initial value (Buxton, 2002). The

relation between CBF and CMRO2 is CMRO2 = Ed CAd CBF

where CA is the arterial oxygen concentration. This may be written

in normalized quantities as E = E0 m/f. Combining this expression

with Eq. (A14) yields

E f ;E0ð Þ ¼ E0

f þ n� 1

nf
ðA15Þ

which permits us to rewrite Eq. (A13) as

s0q̇q ¼ f þ n� 1

n
� fout vð Þ q

v
ðA16Þ

The BOLD signal change as a function of normalized volume

and deoxyhemoglobin is

DS=S0 ¼ V0 k1 þ k2ð Þ 1� qð Þ � k2 þ k3ð Þ 1� vð Þ½ � ðA17Þ

where V0 is the resting blood volume fraction (Obata et al., 2004).

The first constant term k1 = 4.3v0E0TE where TE is the echo time

of the sequence and v0 = 40.3d (B0/1.5) s
�1 is a magnetic field (B0)

dependent frequency offset. The second constant term k2 =

br0E0TE where b = SE/SI is the intrinsic ratio of blood to tissue

signals at rest and r0 is the slope of the intravascular relaxation rate

R2,IT versus the extraction fraction E (Li et al., 1998). The blood

and tissue signals are defined as SE = SE,0 exp(�TE/T2,ET ) and SI =

SI,0 exp(�TE/T2,IT ), respectively, where T2IT and T2ET are the resting

intravascular and extravascular transverse relaxation times and SE0
and SEI are the effective spin densities. For this paper, we assume

average values of T2,ET = 25 ms and T2,IT = 12.8 ms at 7 T (Yacoub



Y. Behzadi, T.T. Liu / NeuroImage 25 (2005) 1100–11111110
et al., 2001) and also assume that the effective spin densities are

equal. In vitro measurements have shown that r0 exhibits a

quadratic dependence on field strength (Silvennoinen et al., 2003),

so that we may calculate its value as a function of field strength as

r0 = 25.0d (B0/1.5)
2 where 25.0 s�1 is the measured in vivo value at

1.5 T (Li et al., 1998; Obata et al., 2004). Finally, the third constant

term is defined as k3 = b � 1.
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