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be used in a variety of problems associated with transient signal pro-
cessing, and it can provide robustness without performance degradation
relative to conventional methods as the GLRT. Structural signal infor-
mation is lost when using ordered measurements, and therefore, if such
information is available, the OS approach is beneficial only where its
advantages cover for the information loss. The OS approach achieves
these advantages in the cost of the increasing computational complexity
of the processors. Modern computational capabilities enable the imple-
mentation of algorithms based on this approach and the benefit of its
advantages.

APPENDIX

PROOF OFTHEOREM

Assume that (8) has a local maximum atL̂. In order to prove that this
local maximum is also a global maximum, we have to prove that the
likelihood function is a monotonic increasing function for everyL < L̂
and monotonic decreasing function for everyL > L̂. We prove that
the likelihood function is a monotonic decreasing function forL > L̂.
Proving the other part is similar.

SinceL̂ is a local maximum

fX (xm :N j�; L̂)

fX (xm :N j�; L̂+ 1)
� 1: (13)

We plug in (8) in (13), and we use basic algebraic operations that finally
yield

1� FN (xm :N j�) �
L̂�m+ 1

L̂+ 1
: (14)

We now prove that

fX (xm :N j�; L̂+ 1)

fX (xm :N j�; L̂+ 2)
� 1: (15)

Assume that (15) does not hold so that(fX (xm :N j�; L̂ +
1))=(fX (xm :N j�; L̂ + 2)) � 1. Using the same method that
was used to simplify (13), we get

1� FN (xm :N j�) �
L̂�m+ 2

L̂+ 2
: (16)

The result of combining (14) and (16) is

L̂�m+ 2

L̂+ 2
� 1� FN (xm :N j�) �

L̂�m+ 1

L̂+ 1
: (17)

It is easy to verify that(L̂ � m + 1)=(L̂ + 1) is smaller than(L̂ �
m+ 2)=(L̂+ 2). Since0 � 1� FN (xm :N j�) � 1, (17) is false, and
therefore, (15) is true.

Using the same method, we prove, by induction, that for everyL >
L̂, if (fX (xm :N j�; L))=(fX (xm :N j�; L + 1)) > 1, then
(fX (xm :N j�; L + 1))=(fX (xm :N j�; L + 2)) > 1. This
completes proof. Q.E.D.
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Detection of Transients in Noise with the Undecimated
Discrete Wavelet Transform

Thomas T. Liu and Antony C. Fraser-Smith

Abstract—A method based on pattern matching in the undecimated dis-
crete wavelet transform domain is introduced for the detection of a known
transient with unknown parameters in the presence of1 noise. Maxima
tracking techniques are used to reduce the computational complexity of the
matching procedure by an order of magnitude, with minimal performance
impact.

Index Terms—Signal detection, wavelet transforms.

I. INTRODUCTION

Wavelet transforms have been widely applied to the problem of
transient detection and processing, primarily because the transform
basis functions provide good time localization. For a transient with
known parameters in1=f Gaussian noise, Wornell [1] described a
shift-variant, matched filter detector in the discrete wavelet transform
(DWT) domain. Detectors based on maxima tracking in either the
undecimated discrete wavelet transform (UDWT) domain [2] or the
analytic wavelet transform domain [3] have also been proposed. These
techniques rely on the observation that the evolution of the transform
maxima across scales provides a measure of the local regularity of the
signal [2]. Maxima tracking makes intuitive sense, but the connection
to standard detection theory has not been clear.

In this correspondence, we extend the work of [1] and introduce a
shift-invariant, generalized likelihood ratio test (GLRT) detector for a
known transient signal of unknown amplitude, scale, and delay param-
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eters in1=f Gaussian noise. The proposed detection method can be im-
plemented in a straightforward manner as a pattern-matching procedure
in the UDWT domain. Furthermore, the computational complexity of
the matching process can be reduced, with negligible impact on per-
formance, by an order of magnitude through the use of the transform
local maxima to estimate the delays and scales that are most likely to
maximize the detection statistic. This result provides a means of inter-
preting maxima-tracking-based techniques in the context of detection
theory.

II. THEORY

We use the subscript notation m(t) = 2�m=2 (2�mt) and
 m;n(t) = 2�m=2 (2�mt � n), where (t) is an orthonormal
wavelet. The notationC2 refers to the Coiflet (parameter 2) family
of wavelets and scaling functions [4]. The inner product of two
functions is defined ashf(t); g(t)i =

1

�1
f(t)g�(t)dt, where

g� is the complex conjugate ofg. The DWT of a signalx(t) is
Xm;n = hx(t);  m;n(t)i. The choice of time origin for the basis
functions m;n(t) is arbitrary, and we define other DWT’s with basis
functions m;n(t�J) and the notationX[J ]

m;n = hx(t);  m;n(t�J)i,
whereJ is an arbitrary integer shift. IfM denotes the largest analysis
scale of interest, then theX [J]

m;n are invariant to shifts by integer

multiples of 2M , i.e.,X [J]
m;n = X

[J�2 ]

m;n+2
. As a result, there

are 2M unique DWT shifts, with each shift giving rise to a dif-
ferent decomposition of the signalx(t). The UDWT is defined as
~Xm;n = hx(t);  m(t � n)i.

A. Detection Model

Consider the detection of a transient signal with unknown ampli-
tude, scale, and delay. We have the standard choice between two hy-
potheses [H0: x(t) = v(t) andH1: x(t) = Ask; l(t) + v(t)], where
A 6= 0 is the unknown amplitude, andk andl are integers that repre-
sent the quantized scale and delay, respectively. We definesk; l(t) =
2
k=2�k(t � l), where�k(t) = 2�k=2�(2�kt), and�(t) is the signal
model. The reason for the leading2
k=2 factor is given in Section
II-C. The additive noisev(t) is assumed to be a1=f Gaussian random
process.

A standard scheme for detection with unknown parameters is the
generalized likelihood ratio test (GLRT) [5]. It has the following form:
ChooseH1 if the likelihood ratior(x(t)) satisfiesr(x(t)) > r1, where

r(x(t)) =
maxfA; k; lg f(x(t)jA; k; l; H1)

f(x(t)jH0)

andr1 is a threshold value chosen to achieve a desired probability of
false alarm (PFA), and chooseH0 otherwise. In most cases, the like-
lihood ratio can be replaced with a sufficient test statistic that has a
simpler expression [5].

Detection in1=f noise is based on the observation that the DWT
acts as an approximate whitening transform for such processes [1]. If
v(t) represents the noise process with power spectrum�2v=f


 over a
range of frequencies[fmin; fmax], then the DWT coefficientsVm;n
are approximately uncorrelated, and the variance at each analysis scale
m is�2m = �2w2


m, where�2w = (2�)
��2v , and� is a parameter that
depends on the choice of wavelet and
. We also assume thatv(t) has
a finite mean so thatVm;n has zero mean.

B. Detection with Known Parameters

We first consider the detection problem with known signal
parameters in order to develop concepts that will be useful in un-
derstanding the unknown parameter case. Because the DWT acts

Fig. 1. Variation ofE (l) with input delayl for aC scaling function (k = 7)
analyzed with aC wavelet over the rangem = 1–10 with 
 = 1.

as an approximate whitening transform, the equivalent hypotheses
(see [1] and [6]) in the DWT domain areH0: X

[0]
m;n = V

[0]
m;n

and H1: X
[0]
m;n = AS

[0];fk; lg
m;n + V

[0]
m;n, where A; k; and

l are known parameters,X [J]
m;n was previously defined, and

S
[J]; fk; lg
m;n = hsk; l(t);  m;n(t � J)i is the DWT of sk; l(t) with

shift J . The valueJ = 0 corresponds to the standard, unshifted
DWT. The likelihood ratio r(XXX [0]) is f(XXX [0]jH1)=f(XXX

[0]jH0),
whereXXX [J] = fX

[J]
m;n; m; n 2 Zg is the vector of DWT ob-

servations. The ratio simplifies to yield the sufficient test statistic
�(XXX) =

m;n
2�
mX

[0]
m;nS

[0];fk; lg
m;n , where the superscript onXXX

has been omitted for notational convenience.

Because the DWT is shift variant, the performance of the detector is
also shift variant. Shift variance in detectors that use a whitening trans-
form arises when the signal energy in the transformed coordinates is
shift variant [6]. Consider the performance indexd = (A Ek(l)=�w),
which is the normalized distance between the distributions of�(XXX)
for the two hypothesesH0 andH1. For each scalek, the termEk(l)
is a function ofl and is defined asEk(l) = (1=A)E[�(XXX)jH1] =

m;n
2�
m(S

[0];fk; lg
m;n )2, whereE[�(XXX)jH1] is the expected value

of �(XXX) given hypothesisH1. Fig. 1 shows an example of the varia-
tion of Ek(l) with input shiftl when�(t) is aC2 scaling function, and

 = 1. It is shown in [7] that the degree of shift variance, as measured
by the ratio� = (maxl Ek(l)=minl Ek(l)), increases with
.

We construct a shift-invariant detector by first noting that the
noise statistics are independent of DWT shift since all shifted
transforms also act as approximate whitening transforms. As a
result, for a given known signalsk; l(t), we are free to choose the
DWT shift that maximizes the performance index. For the signal
sk;0(t) with delay l = 0, we define a detector with a test statistic
of the form�(XXX) =

m;n
2�
mX

[J ]
m;nS

[J ];fk; 0g
m;n , whereJk =

argmaxJ (1=A)E[�(XXX)jH1]=argmaxJ m;n
2�
m(S

[J];fk;0g
m;n )2.

The subscriptk on Jk indicates that the optimum DWT shift is a
function of the scalek of the input signal. The performance index
of this detector is equal to the maximum performance index of the
shift variant detector sincemaxJ m;n

2�
m(S
[J];fk; 0g
m;n )2 =

max�l m; n
2�
m(S

[0];fk; lg
m;n )2 = maxl Ek(l), where we have

used the identityS[J];fk; 0g
m;n = S

[0];fk;�Jg
m;n . We introduce the notation

Ek = maxl Ek(l) for use in the remainder of this correspondence.

For the case of arbitrary delayl, we define a test statistic
�(XXX; l) =

m;n
2�
mX

[J (l)]
m;n S

[J (l)]; fk; lg
m;n , where Jk(l) =

argmaxJ m;n
2�
m(S

[J];fk; lg
m;n )2. Using the previously

stated identity, we note that
m;n

2�
m(S
[J ];fk; 0g
m;n )2 =
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m;n 2
�
m(S

[J +l];fk; lg
m;n )2 so that Jk(l) = Jk + l. We may

therefore rewrite the test statistic as

�(XXX; l) =
m;n

2�
mX [J +l]
m;n S[J +l]; fk; lg

m;n

=
m;n

2�
mX [J +l]
m;n S[J ];fk; 0g

m;n : (1)

In the UDWT domain, the statistic is written as�(XXX; l) =

m;n 2�
m ~Xm; 2 n+J +l
~S
fk; 0g
m; 2 n+J , where we have introduced

the notation~Sfk; lgm;n = hsk; l(t);  m(t� n)i for the UDWT ofsk; l(t)
and used the relation~Sfk; lgm; 2 n+J = S

[J]; fk; lg
m;n .

The test statistic�(XXX; l) has conditional meansE[�(XXX; l)jH0] =
0 and E[�(XXX; l)jH1] = EkA and conditional variances
var[�(XXX; l)jH0] = var[�(XXX; l)jH1] = �2wEk. As a result,
the performance index isd = (A

pEk=�w), and the de-
tector is shift invariant with respect to the delay parameter
l. The likelihood ratio that corresponds to this test statistic is
r(XXX) = (f(XXX [J +l]jH1)=f(XXX

[J +l]jH0)), where the form of the
ratio emphasizes the fact that the detector uses the known parameter
valuesk and l to choose the DWT shiftJk + l that maximizes its
performance.

C. Detection with Unknown Parameters

It can be shown that a straightforward extension of the shift-variant
detector described in the previous section to the case of unknown pa-
rameters yields a GLRT detector that is also shift variant [7]. In order
to obtain shift invariance, we extend (1) to the unknown parameter case
and define a likelihood ratior( ~X~X~X) equal to

max
fA;k;lg

f(XXX [J +l]jA; k; l;H1)

f(XXX [J +l]jH0)

= max
fA;k;lg

m;n

exp � (X [J +l]
m;n � AS[J +l];fk;lg

m;n )2

2� 2

m;n

exp � (X [J +l]
m;n )2

2� 2

(2)

where ~X~X~X = f ~Xm;n; m; n 2 Zg is the vector of UDWT obser-
vations and contains all possible DWT coefficientsX [J]

m;n; J 2 Z .
Note that the DWT shiftJk + l is chosen to maximize the de-
tector performance conditioned on the unknown parametersk
and l. With the substitution of the maximum likelihood estimate
for A, the ratio in (2) simplifies to yield a sufficient test statistic
�( ~X~X~X) = maxfk;lg(1=Ek)( m;n 2�
mX

[J +l]
m;n S

[J ];fk; 0g
m;n )2.

To demonstrate shift invariance, we definegk; l = (1=
pEk) m;n

2�
mX
[J +l]
m;n S

[J ];fk; 0g
m;n such that�( ~X~X~X) = maxfk;lg g

2
k; l. The test

statistic�( ~X~X~X) is shift invariant if the set of random variablesG =
fgk; l; k; l 2 Zg is invariant with respect to the assumed signal delay
for hypothesisH1. Consider two signalsA0sk ; l (t) andA0sk ; l (t)
with signal delays ofl0 and l1, respectively. For delayl0, gk; l =

(1=
pEk) m;n 2

�
m(A0S
[J +l]; fk ; l g
m;n + V

[J +l]
m;n )S

[J +l]; fk; lg
m;n ,

whereas for delayl1, the correspondinggk; l = (1=
pEk) m;n

2�
m(A0S
[J +l ];fk ; l g
m;n + V

[J +l ]
m;n )S

[J +l ];fk; l g
m;n . The sets

G = fgk; lg andG0 = fgk; l g are identical if for eachl there exists a
uniquel0 such thatgk; l = gk; l . The choicel0 = l+ l1 � l0 suffices.

Fig. 2. UDWT (m = 5–10) and most significant coefficients of aC scaling
function (solid line, circles) and a Gaussian function (dash-dot line, stars).
Signals are shown in top row.

With the definitionsk; l(t) = 2
k=2�k(t), it is shown in [7] that
Ek = E0 for all k, whereE0 is a constant. This leads to a simplified
statistic�( ~X~X~X) = maxfk;lg �( ~X~X~X; k; l), where

max
fk;lg

�( ~X~X~X; k; l) =max
fk;lg

m;n

2�
mX [J +l]
m;n S[J ];fk; 0g

m;n (3)

=max
fk;lg

m;n

2�
m ~Xm; 2 n+J +l
~S
fk; 0g
m; 2 n+J :

(4)

Recall that we have assumedA 6= 0 in our detection model. With the
more restrictive assumption thatA > 0, the absolute value operation
may be omitted from the test statistic [7].

III. I MPLEMENTATION

Equations (3) and (4) represent two equivalent ways of computing
the detection statistic. We implement (4), which can be viewed as a
pattern-matching operation in the UDWT domain, where for each un-
known scale the pattern is~Sfk; 0gm; 2 n+J . The pattern matching proce-
dure in (4) requiresO(2N k2K Pk) operations, whereK is the set
of unknown scales, andPk is the number of nonzero coefficients in
~S
fk; 0g
m; 2 n+J . The contribution of most of these coefficients to the de-

tection process is negligible, and we can reduce the number of required
coefficients by ranking them according to their contribution toEk and
selecting only the largestTk coefficients. In the case where�(t) is aC2

scaling function and
 = 1, the largestTk = 20 coefficients account
for 99.4% of the value ofEk.

We can further reduce the number of computations required by ob-
serving that the most significant coefficients of the pattern~S

fk; 0g
m; 2 n+J

tend to be located near peaks in the UDWT domain. Fig. 2 shows an
example for both theC2 scaling function and the Gaussian function.
This result reflects the fact that the shiftJk was chosen to maximize
Ek. In particular, we note that a number of the coefficients lie some-
where on the maximum peaks at each analysis scalem. We expect,
therefore, that “maxima ridges” in the UDWT domain, where the local
maxima propagate across scales, are likely to correspond to scales and
delays for which the detection statistic is maximized. Instead of com-
puting�( ~X~X~X; k; l) for all possible values ofk andl, we constrain the
computation to a subset of values that correspond to maxima ridges.
If we constrain the search for transform ridges to analysis scales that
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(a) (b)

Fig. 3. ROC curves for methods a) (solid line, square), b) (dash-dot line, circle), c) (dashed line, triangle), and d) (dotted line, asterisk). (a)k = 7. (b) k = 8.
Error bars are plus or minus one median absolute deviation. Transient model is aC scaling function withk = 7 or 8, andd = 5. The ROC for detector with
known parameters is shown in bold.

are much coarser than the finest analysis scales, e.g.,m > 5, then the
number of maxima that need to be considered is typically 1 to 2 orders
of magnitude less than the lengthN of the original signal. As a result,
this preselection of locations can typically reduce the computational
complexity of the pattern matching procedure by at least an order of
magnitude.

The preceding discussion leads us to propose the following detection
methods.

a) Baseline GLRT Method:Compute�( ~X~X~X; k; l) for all values ofk
andl, and find the maximum.

b) Preselection of Scales and Delays Using Transform Ridges:Use
a ridge-finding algorithm to generate estimates of both the scale
and delay of the transient. Theqth estimate is referred to as an
ordered pair(k̂q; l̂q). Compute the detection statistic�( ~X~X~X) =
maxq �( ~X~X~X; k̂q; l̂q).

c) Preselection of Delays Using Transform Ridges.Use a ridge-
finding algorithm to estimate the delays but not the scales. The
detection statistic is�( ~X~X~X) = maxk;q �( ~X~X~X; k; l̂q).

d) Preselection of Delays Using Local Maxima at Selected Scales:
Use the positions of the local maxima over a range of analysis
scales as delay estimates. The form of the detection statistic is
the same as for Method C.

The ridge-finding algorithm is described in detail in [7], where it is also
shown that the computational complexities of methods b), c), and d) are
typically an order of magnitude less than that of method a). Variations
of the proposed methods are also described in [7].

We used Monte Carlo simulations to obtain the receiver operating
characteristics (ROC) of the detectors described above. Each simula-
tion consisted of 200 independent trials. Using the method described in
[8], we generated1=f noise sample paths of lengthN = 16384 and
with 
 = 1. We employed three different transient signal models.

1) C2 scaling function;
2) Gaussian functiong(t) = �e�at ;

3) two-sided exponential functione(t) = �e�bjtj.

The parametersa, b, �, and� were chosen so that the temporal widths
and parameterEk were equivalent for all signal models. For each signal
type,Pk = 20. The performance indexd = (A

pEk=�w) is used
as a measure of the signal to noise ratio of each simulation, with the
caveat that, for a GLRT detector,d no longer represents the normal-
ized distance between the distributions under the two detection hy-
potheses. We computed the UDWT using aC2 wavelet for analysis
scalesm = 1–10. For methods a), c) and d), the maximization overk
was performed over the set of unknown scalesK = f6; 7; 8g.

Fig. 3 shows ROC curves for methods a)–d) with the following pa-
rameters:

• C2 scaling function transient model;
• k = 7 and 8;
• d = 5.

Curves for other parameter values can be found in [7]. The perfor-
mance loss of the GLRT detector [method a)] is due primarily to the
large range of unknown delay values. The performance of methods c)
and d) is equivalent to that of a) for all transient models and input
scales, thus showing that maxima-tracking-based methods are effec-
tive for estimating the parameter values that maximize the proposed
GLRT statistic. The performance of method b) is slightly worse for
some cases, indicating errors in the estimation of the scale of the under-
lying transient from the scales of the transform maxima. The proposed
detector methods have also been shown to be robust with respect to
small errors in the assumed transient model and scale while providing
good discrimination against transients with scales outside the desired
detection range. Details are provided in [7].

IV. CONCLUSION

We have described a GLRT detector for transients in1=f noise by
making use of the approximate whitening properties of the DWT. The
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detector is shift invariant and is implemented with a pattern-matching
operation in the UDWT domain. Maxima tracking techniques can pro-
vide estimates of the parameter values that maximize the detection
statistic, resulting in an order-of-magnitude reduction in the compu-
tational complexity of the pattern matching procedure with little or no
performance loss.
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Median-Based Cyclic Polyspectrum Estimation

Antonio Napolitano and Chad M. Spooner

Abstract—In this paper, median-based estimation methods for the cyclic
polyspectrum are proposed. The algorithms do not requirea priori knowl-
edge of the submanifolds, that is, they do not require the knowledge of
all of the lower order cycle frequencies of the time-series available for the
estimation of the cyclic polyspectrum. Therefore, such methods are partic-
ularly useful when the cyclostationarity of the signals under consideration
is not completely known. The proposed estimators converge to the theo-
retical values of the cyclic polyspectrum when the collect time approaches
infinity and the spectral resolution becomes infinitesimal. Furthermore,
their accuracy is very nearly the same as that of the usual time- and fre-
quency-smoothed cyclic periodogram methods that usea priori knowledge
of lower-order cycle frequencies to avoid the submanifolds.

Index Terms—Cyclic polyspectrum estimation, cyclostationarity, higher
order statistics.

I. INTRODUCTION

In recent years, the theory of higher order cyclostationary signals
has been developed in both the stochastic and fraction-of-time (FOT)
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probability frameworks [1], [3]–[5], [7], [9], [10]. Such signals, when
processed by homogeneous nonlinear time-invariant transformations,
regenerate spectral lines, whose frequencies are calledcycle frequen-
cies, which originate from hidden periodicities due to periodic signal
processing operations such as modulation, sampling, coding, and mul-
tiplexing. The cycle frequencies are related to signal parameters such as
carrier frequency, baud rate, sampling frequency, etc. Signal processing
algorithms based on the regenerated spectral lines turn out to besignal
selectivein many cases and, hence, are very tolerant to noise and in-
terference suitable for signal detection and classification purposes [9],
[10].

A central statistical parameter in the the study and exploitation
of higher order cyclostationarity properties is theN th-order cyclic
polyspectrum(CP) [3]. Estimators for the CP have been proposed
in [10] and in [1] for continuous-time and discrete-time signals,
respectively. In [10], the measurement problem has been formulated in
the FOT probability framework in which the statistical functions, as-
suming they exist, are defined in terms of a single infinite-length time
series , and hence, estimators defined by using a single finite-length
data record converge by definition to the theoretical values when
the measurement collect time becomes infinite. Alternatively, in [1],
the estimation problem has been addressed in the stochastic process
framework, and mixing conditions involving the cumulant of the
stochastic process have been presented to provide the convergence of
the estimators in the statistical mean-square sense.

All the estimation methods presented in [1] and [10] require the
knowledge of the�-submanifolds, which is equivalent to knowledge
of all cycle frequencies of orders lower than that of the CP to be esti-
mated. Sucha priori knowledge is not always available. For example,
when a signal of interest is embedded in additive interference and noise,
even if the interference does not exhibit cyclostationarity at the consid-
ered orderN , cycle frequency, and conjugation configuration [3], the
� submanifolds of the composite signal depend not only on the lower
order cycle frequencies of the signal of interest but also on those of the
interference.

New estimation algorithms for the CP are proposed in this paper.
These methods are based on the use of the median as a measure of the
average value of a set of quantities rather than the arithmetic mean,
which is used in all previously proposed estimators. The application of
the median to estimation of the CP is suggested by the results in [6], in
which various robust measures of the average, including the median,
are applied to estimation of the third-order cumulant of stationary time
series with some success. In the present work, the median operation is
applied to theN th-order cyclic periodogram or to a time- or frequency-
smoothed version of it, and this application obviates the need fora
priori knowledge of the� submanifold of the time-series available for
the estimation. Therefore, the methods are thought to be particularly
useful for estimation scenarios in which a complete characterization of
the signal of interest and/or of the interference is not available.

The signal analysis framework adopted in this correspondence is that
of the FOT probability [2], [3]. The proposed algorithms work under
the mild assumption that time-shifted versions of the time series are
asymptotically independent (in the FOT probability sense) so that the
cyclic polyspectrum is a well-behaved function (contains no Dirac delta
functions). Moreover, the proposed estimators are shown to converge
to their ideal CP values when the collect time approaches infinity and
the spectral resolution becomes infinitesimal. Furthermore, they ex-
hibit very nearly the same accuracy as the previously proposed time-
and frequency-smoothed cyclic periodogram methods that usea priori
knowledge of lower order cyclostationarity to avoid the� submani-
folds.
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