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be used in a variety of problems associated with transient signal pro{4]
cessing, and it can provide robustness without performance degradation
relative to conventional methods as the GLRT. Structural signal infor- 51
mation is lost when using ordered measurements, and therefore, if such
information is available, the OS approach is beneficial only where its
advantages cover for the information loss. The OS approach achievef]
these advantages in the cost of the increasing computational complexity
of the processors. Modern computational capabilities enable the imple-
mentation of algorithms based on this approach and the benefit of its
advantages.

[8l
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APPENDIX
PROOF OFTHEOREM

Assume that (8) has a local maximuniatin order to prove that this

local maximum is also a global maximum, we have to prove that the

likelihood function is a monotonic increasing function for evéry L
and monotonic decreasing function for every> L. We prove that
the likelihood function is a monotonic decreasing functionfor L.
Proving the other part is similar.

Sincel is a local maximum

f‘\m:N(‘/'/’m:N Qg .i)
me;N('T’m:N|Q7 L+1) -

(13)

We plugin (8) in (13), and we use basic algebraic operations that finally

yield
L-m +1
I_F.’T'rm,:‘f'e < —————mM . 14
N N|8) < T (14)
We now prove that
fx,  v(Tm: N8, %—1— 1) - s)
fX—m;]\](-T’m:]\/|g7 L —|— 2)
Assume that (15) does not hold so thaty, . . (xm.~|6. L +

1))/(f)(m N(Im N

was used to simplify (13), we get

L—m+2
I_F.rrxm,:"'e >A7. 16
N(Zm:n]0) > e (16)
The result of combining (14) and (16) is
L_Am—‘rzﬁl—FN(«lmNQ)Sw (17)
L+2 L+1

It is easy to verify thatL — m + 1)/(L + 1) is smaller thar(L —
m +2)/(L+2).Sinced < 1 — Fx(xm.n|8) < 1, (17) is false, and
therefore, (15) is true.

_ Using the same method, we prove, by induction, that for exery
L, if (me:N('Tm:N|Q¢ L))/(fxm N(mmiN Qv L+ 1)) > 1, then
(f,\/m:N(;I:,,I;lv\/|Q, L+ 1))/(fXM:N(l'm:N|Q, L+ 2)) > 1. This
completes proof. Q.E.D.
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Detection of Transients in1/ f Noise with the Undecimated
Discrete Wavelet Transform

Thomas T. Liu and Antony C. Fraser-Smith

Abstract—A method based on pattern matching in the undecimated dis-
crete wavelet transform domain is introduced for the detection of a known
transient with unknown parameters in the presence ofl / f noise. Maxima
tracking techniques are used to reduce the computational complexity of the
matching procedure by an order of magnitude, with minimal performance
impact.

Index Terms—Signal detection, wavelet transforms.

|. INTRODUCTION

9. L +2)) < 1. Using the same method that \wavelet transforms have been widely applied to the problem of

transient detection and processing, primarily because the transform
basis functions provide good time localization. For a transient with
known parameters in/f Gaussian noise, Wornell [1] described a
shift-variant, matched filter detector in the discrete wavelet transform
(DWT) domain. Detectors based on maxima tracking in either the
undecimated discrete wavelet transform (UDWT) domain [2] or the
analytic wavelet transform domain [3] have also been proposed. These
techniques rely on the observation that the evolution of the transform
maxima across scales provides a measure of the local regularity of the
signal [2]. Maxima tracking makes intuitive sense, but the connection
to standard detection theory has not been clear.

In this correspondence, we extend the work of [1] and introduce a
shift-invariant, generalized likelihood ratio test (GLRT) detector for a
known transient signal of unknown amplitude, scale, and delay param-
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etersinl/f Gaussian noise. The proposed detection method can be im- 0.5
plemented in a straightforward manner as a pattern-matching procedure
in the UDWT domain. Furthermore, the computational complexity of 0.45}
the matching process can be reduced, with negligible impact on per-
formance, by an order of magnitude through the use of the transform
local maxima to estimate the delays and scales that are most likelyto 0.4
maximize the detection statistic. This result provides a means of inter- }
preting maxima-tracking-based techniques in the context of detection 0.35-
theory.
0.3,
Il. THEORY
We use the subscript notation,,(t) = 2‘""/21;’;(2"%) and 025 ‘ ) ‘ ‘ )
Y, n(t) = 27™/24(27™t — n), wherey(t) is an orthonormal ’ 200 400 600 800 1000

wavelet. The notatior”; refers to the Coiflet (parameter 2) family Input Defay (1)

of wavelets and scaling functions [4]. The inner product of two

functions is defined asf(t), g(t)) = [~ f(t)g"(t)dt, where Fig.1. Variation o, (7) with input delayl for aC’; scaling functionk = 7)

g* is the complex conjugate of. The DWT of a signalz(t) is analyzed with &> wavelet over the range = 1-10 withy = 1.

Xy, n = {x(t), ¥m,n(t)). The choice of time origin for the basis

functionsy..,, » (¢) is arbitrary, and we define other DWT’s with basis ) o )

functionsu,,. » (i—J) and the notatior 1], = (2 (t), Do (E=T)) as an approximate whitening transform, the equivalent hypotheses
SR , e L L ' .(see [1] and [6]) in the DWT domain arfly: X, = VL

where.J is an arbitrary integer shift. I} denotes the largest analysis 0] o], {k, 1} o T

scale of interest, then thm[ﬂn are invariant to shifts by integer and Hi: Xmn = AS’”;[?}] + ‘m’“{ where Af k, and

multioles of2™ je. xI1 = xl/—2" As a result. there . are known parametersX,.'. was previously defined, and

g/f . P m’.n o i mﬁ"+2(M_.m>- . i ’ i S,[-;z]]’n{k’l} = <.5‘k,1(t), ’¢’,W,,n(t — J)> is the DWT Ofsk,[(t) with

are 2 unique DWT shifts, with each shift giving rise to a dif-gpitt ; The valueJ = 0 corresponds to the standard, unshifted

ferent decomposition of the signal¢). The UDWT is defined as DWT. The likelihood ratio T(X[o]) is f(X[°]|H1)/f(X[°]|HD),

Ko, = {2(t), Ym(t = n)). where X1 = {X!J,.m,n € 2} is the vector of DWT ob-
) servations. The ratio simplifies to yield the sufficient test statistic
A. Detection Model XX) =3, 27 xLL s where the superscript off

Consider the detection of a transient signal with unknown ampfas been omitted for notational convenience.
tude, scale, and delay. We have the standard choice between two hyBecause the DWT is shift variant, the performance of the detector is
pothesesMo: x(t) = v(t) andHi: x(t) = Asi,1(t) + v(t)], where also shift variant. Shift variance in detectors that use a whitening trans-
A # 0 is the unknown amplitude, aridand! are integers that repre- form arises when the signal energy in the transformed coordinates is
sent the quantized scale and delay, respectively. We defing) =  shift variant [6]. Consider the performance index (A/E.(1)/ow),
27k/2¢, (t — 1), wheregi (t) = 27%/2¢(27 ), andg(t) is the signal  which is the normalized distance between the distributions(df )
model. The reason for the leadiRg*/? factor is given in Section for the two hypothese&l, and H,. For each scalé, the term&y (1)
II-C. The additive noise(t) is assumed to bely f Gaussian random is a function ofl and is defined as. (1) = (1/A)E[NX)|H1] =
process. S22 where E[A(X)|H,] is the expected value

A standard scheme for detection with unknown parameters is the\(X) given hypothesisT; . Fig. 1 shows an example of the varia-
generalized likelihood ratio test (GLRT) [5]. It has the following formtion of £ (1) with input shift/ whené(t) is aC» scaling function, and

Choosefl; ifthe likelihood ratior (x(t) ) satisfies(x(t)) > r1,where ~ = 1. Itis shown in [7] that the degree of shift variance, as measured
by the ratiop = (max; & (1)/ min; (1)), increases with.

r(2(t)) = nmx{“"kvl}‘f(m(t) A k.1 H) We construct a shift-invariant detector by first noting that the

f(x(t)[Ho) noise statistics are independent of DWT shift since all shifted

. . . .. transforms also act as approximate whitening transforms. As a
andr; is a threshold value chosen to achieve a desired probability ol it for a given known signal. i(t), we are free to choose the

false alarm (PFA), and chood#, otherwise. In most cases, the like-p\y1 ghift that maximizes the performance index. For the signal

lihood ratio can be replaced with a sufficient test statistic that hastqgo(t) with delay! = 0, we define a detector with a test statistic

Sirgplte r ixpresls}(}n ohse | based on the observation that the DW® 116 OMAX) = 2. 27 m XL SERL R0 where g, =
etection in noise is based on the observation that the : 01

LI Ny o e —ym LA 02
acts as an approximate whitening transform for such processes [l]?‘_lrlfems‘tjgg (clr{p{tl?:i [r:\SX)i%li(]:a_t;sl,gt;:;xt%ggb?inaum I(DL?NTn <hi ft) <
s(t) represents the noise process with power spectrgfiy ™ over a ; k . . .
Tra(m)ge gf frequencielf. F} ], then tlf?e DWTpcoefEiI({?;ntéf’ function of the scale: of the input signal. The performance index
are approximately uncorrelated, and the variance at each analysis sgél'é'ls d(_etef[:t(:jr ![S etqual_to th? max'm”gf’ﬁff";ﬂ??ﬁ%ﬁ”ﬁ“ of the
miseoZ, = 02,27, wheres2, = (27)" ko2, andx is a parameter that Shift varian ie,: Or[oJSI{rl*C%HjXJ z (S )
depends on the choice of wavelet andVe also assume thatt) has Max—1 22, ,, 277" (Swn " 7)" = maxi & (1), where we have
a finite mean so thak,,, » has zero mean. used the identit)&[ﬂ W0 = 5,[2]",7“’ =7} We introduce the notation

&, = max; & (I) for use in the remainder of this correspondence.

B. Detection with Known Parameters For the case of arbitrare/ d(]alaé/, we define a test statistic
() s 7

~ oy 1 O (k. 0} _
We first consider the detection problem with known signat(X:1) = Zm,qyz [1])&{7: e o o where Jk(l). =

parameters in order to develop concepts that will be useful in uprgmaxy -, 277" (SyW " 7). Using  the  previously

derstanding the unknown parameter case. Because the DWT a&t#ded identity, we note thad_ 2‘”’”’(51,{,’31'”’0})2

m,n

m, n
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Zrn,,n 277771(57[7{7;\,2-1];{&:‘1})2 so thatJ.(I) = J. + 1. We may 50.00639, i T T /,J i ; T T :
therefore rewrite the test statistic as  —0.068|- 1 . 1 ‘ . . 1 -
v 0.0127 ‘ ‘ { ‘ ' ‘ q
It 0 iy
B _0012 i Il L L L ] 1 Il B
 0.0462} ' ‘ ‘ W ' ' ‘ ]
It 0
MX, 1) = Z g=vm x U+ gL+, {k, 1} £ -0.046} . 1 ‘ ‘ ! 1 ’ ]
/ m,n o . 70.2(?67- W ]
— Z g=rm x i+ gl /el {k, 0} 1) £ -0.206 - . ' 1 ‘ ! ‘ ! 1
R T OO e\ ‘
m,n It 0 *
E ‘0'487 i i | 1 il ] ] ] ]
In the UDWT domain, the statistic is written as(X.7) = o osust ' ’ ‘ﬁ\/\/’b—
S 27 X 2 1S4 Where we have introduced = o) < — i
the notationS4 1} = (sk,1(t), Ym(t — nﬁ) for the UDWT Ofsk, () < oasss ’ ' = ' ’ ,
and used the relatiofi",%., , , = Sk, %" = _oussf e e ]
The test statistia (X, /) has conditional means[\(X, 1)|Ho| = 1500 1000 —s00 0 00 1000 1500
0 and E[MNX,!)|H,] = ¢&A and conditional variances
varfA(X, D|Ho] = vai\NX,D|H] = oL&. As a result, Fig.2. UDWT (n = 5-10) and most significant coefficients of(&; scaling
the performance index isl = (A,\/a/a ), and the de- function (solid line, circles) and a Gaussian function (dash-dot line, stars).

. P . . Signal h in t .
tector is shift invariant with respect to the delay parameter'gnasalres own in fop row

l. The likelihood ratio that corresponds to this test statistic is

r(X) = (FXUsHH )/ £(XVs T Hy)), where the form of the  With the definitionsy, i(t) = 278/2¢, (1), it is shown in [7] that
ratio emphasizes the fact that the detector uses the known paraméter o for all k, wherec, is a constant. This leads to a simplified
valuesk and! to choose the DWT shifff;, + [ that maximizes its StatisticA(X) = max,.  M(X, k, 1), where

performance.

max \(X, k, ) = max Z 277 x Ukt gLT] (k. 0} 3)
ion wi {k.0} (k.03 ’ ’
C. Detection with Unknown Parameters m,n
It can be shown that a straightforward extension of the shift-variant = max Z 27X, zmn+1k+l§y{nk’zoin+/ .
detector described in the previous section to the case of unknown pa- L feud ' ’ o
rameters yields a GLRT detector that is also shift variant [7]. In order (4)
to obtain shiftinvariance, we extend (1) to the unknown parameter case
and define a likelihood ratie(X) equal to Recall that we have assumeds£ 0 in our detection model. With the
more restrictive assumption thdt > 0, the absolute value operation
FOXVH0|A, k1, HY) may be omitted from the test statistic [7].
max -
{Ak,I} f(X[JkH} |Ho)
Ill. | MPLEMENTATION
(XL — AsteriAbd)?
H exp| — - 20T 27 Equations (3) and (4) represent two equivalent ways of computing
— max ™" @) the detection statistic. We implement (4), which can be viewed as a
{Ak.1} (vafkj’]y pattern-matching operation in the UDWT domain, where for each un-
H CXPl ~ 5oz known scale the pattern S{’“fﬁ; 4, - The pattern matching proce-

dure in (4) require$)(2N >, . P:) operations, wher& is the set

of unknown scales, ané; is the number of nonzero coefficients in
whereX = {X,..., m.n € Z} is the vector of UDWT obser- §iﬁ’2°m,l+Jk. The contribution of most of these coefficients to the de-
vations and contains all possible DWT coefﬁcieﬂfé;"]n, J ¢ z. tectionprocessis negligible, and we can reduce the number of required
Note that the DWT shift/. + [ is chosen to maximize the de- coefficients by ranking them according to their contributiorftcand
tector performance conditioned on the unknown parameters Selectingonly the largedt. coefficients. In the case whegeét) is aC

and I. With the substitution of the maximum likelihood estimatesc@ling function and' = 1, the largesfli. = 20 coefficients account

for A, the ratio in (2) simplifies to yield a sufficient test statisticor 99-4% of the value of.. _ _
ANX) = maxg iy (1/8)(X,, , 277 XERFGL AR 0Ty, We can further reduce the number of computations required by ob-

serving that the most significant coefficients of the pat@j{frfi” 7,
v L] ol {k, 0} - 2 tend to be located near peaks in the UDWT domain. Fig. 2 shows an
277 Xl S such tha\(X) = maxx,} gk,i- The teSt o a6 for both the, scaling function and the Gaussian function.

stafisticA(X) is _Sh_ift in\_/arianf[ if the set of random variab_lé}é =  This result reflects the fact that the shiff was chosen to maximize
{gk,1; k, 1 € Z} is invariant with respect to the assumed signal delayk

) ] ; &.. In particular, we note that a number of the coefficients lie some-
for hypothesisif, . Consider two signalslo sk, 1, () anddosk, 1, (1) where on the maximum peaks at each analysis sealtVe expect,
with signal delays of, and!,, respectively. For delays, gr,1 =

; o therefore, that “maxima ridges” in the UDWT domain, where the local
(L/VE) L, , 2 " (AaSEkTT o lob oy iir S rl AR 0 ima propagate across scales, are likely to correspond to scales and
whereas for delay,, the corresponding.,r = (1/vV€) 3., . delays for which the detection statistic is maximized. Instead of com-
9= vm (4o Shlk ko i} k] gL AR Y The  sets puting A(X, k. 1) for all possible values of and!, we constrain the
G = {gr,.} andG’ = {gz 1} are identical if for eacl there exists a computation to a subset of values that correspond to maxima ridges.
unique!’ such thayx, 1 = g« . The choicd’ =1+ I, — [, suffices. If we constrain the search for transform ridges to analysis scales that

To demonstrate shift invariance, we define: = (1/v&) 3, .,
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Fig. 3. ROC curves for methods a) (solid line, square), b) (dash-dot line, circle), c) (dashed line, triangle), and d) (dotted line, asteriskj. (B) & = 8.

Error bars are plus or minus one median absolute deviation. Transient modeétisaaling function withk = 7 or 8, andd = 5. The ROC for detector with
known parameters is shown in bold.

are much coarser than the finest analysis scalesy2.¢,5, then the 3) two-sided exponential functiar(t) = Be~bH,

number of maxima that need to be considered is typically 1 to 2 ordefge parameters, b, o, and3 were chosen so that the temporal widths
of magnitude less than the lengthof the original signal. As a result, and parametef;, were equivalent for all signal models. For each signal
this preselection of locations can typically reduce the computationghe, P, = 20. The performance index = (A\/Ex/o.) is used
complexity of the pattern matching procedure by at least an order £f 3 measure of the signal to noise ratio of each simulation, with the
magnitude. caveat that, for a GLRT detectat,no longer represents the normal-
The preceding discussion leads us to propose the following detectjgaq distance between the distributions under the two detection hy-
methods. potheses. We computed the UDWT using'a wavelet for analysis
a) Baseline GLRT Method:omputeA(X, k, 1) for all values oft  scalesn = 1-10. For methods a), ¢) and d), the maximization oker
andl, and find the maximum. was performed over the set of unknown scdles: {6, 7, 8}.
b) Preselection of Scales and Delays Using Transform Riddss: Fig. 3 shows ROC curves for methods a)-d) with the following pa-
a ridge-finding algorithm to generate estimates of both the scatemeters:
and delay of the transient. Theh estimate is referred to as an . ¢, scaling function transient model;
ordered pair(k,, {,). Compute the detection statisti¢ X ) = ek =7and8:
maxg )\(Xg Iz:m iq). e d =5,

©) P_res_electlon .Of DeIays_Usmg Transform Ridgesse a ridge- o\es for other parameter values can be found in [7]. The perfor-
fmdmg_ algorlt_hrr_l tp estimate the delays but not the scales. Tlﬁ?ance loss of the GLRT detector [method a)] is due primarily to the
detectlon_ statistic is(X) — WaXkg /\(X‘_k’ la). large range of unknown delay values. The performance of methods c)
d) Preselectlon_o_f Delays Using Local_ Maxima at Selected Scaleaﬁ;]d d) is equivalent to that of a) for all transient models and input
Use the positions O.f the local maxima over range of analyséﬁales, thus showing that maxima-tracking-based methods are effec-
scales as delay estimates. The form of the detection statistiGyfs, ¢, estimating the parameter values that maximize the proposed
.the sgm.e as for MEth,Od c. . . o . GLRT statistic. The performance of method b) is slightly worse for
The ridge-finding algorithm is described in detail in [7], where itis alsQ,me cases, indicating errors in the estimation of the scale of the under-
shown that the computational complexities of methods b), ¢), and d) §g\q transient from the scales of the transform maxima. The proposed
typically an order of magnitude less than that of method a). Variatiogector methods have also been shown to be robust with respect to
of the proposed methods are also described in [7]. small errors in the assumed transient model and scale while providing

We used Monte Carlo simulations to obtain the receiver operatigg,q discrimination against transients with scales outside the desired
characteristics (ROC) of the detectors described above. Each simyigraction range. Details are provided in [7].

tion consisted of 200 independent trials. Using the method described in
[8], we generated/ f noise sample paths of length = 16384 and
with v = 1. We employed three different transient signal models.
1) C3 scaling function;
2) Gaussian functiog(t) = ae™;

IV. CONCLUSION

We have described a GLRT detector for transients/ifi noise by
making use of the approximate whitening properties of the DWT. The
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detector is shift invariant and is implemented with a pattern-matchipgobability frameworks [1], [3]-[5], [7], [9], [10]. Such signals, when
operation in the UDWT domain. Maxima tracking techniques can prprocessed by homogeneous nonlinear time-invariant transformations,
vide estimates of the parameter values that maximize the detectiegenerate spectral lines, whose frequencies are aafldd frequen-
statistic, resulting in an order-of-magnitude reduction in the compuaies which originate from hidden periodicities due to periodic signal
tational complexity of the pattern matching procedure with little or nprocessing operations such as modulation, sampling, coding, and mul-
performance loss. tiplexing. The cycle frequencies are related to signal parameters such as
carrier frequency, baud rate, sampling frequency, etc. Signal processing
REFERENCES algorithms based on the regenerated spectral lines turn outsigrial
[1] G. Wornell, Signal Processing with Fractals: A Wavelet-Based Ap-seleCtinn m{_;my cases .and’ hence., are very to"f:‘r.ant. to noise and in-
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[4] I. DaubechiesTen Lectures on WaveletsPhiladelphia, PA: SIAM, in [10] and in [1] for continuous-time and discrete-time signals,
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in Noise in Physical Systems ahglf Noise Singapore: World Scien- o .

tific, 1987, pp. 82—86. stochastic process have been presented to provide the convergence of

the estimators in the statistical mean-square sense.

All the estimation methods presented in [1] and [10] require the
knowledge of the3-submanifoldswhich is equivalent to knowledge
of all cycle frequencies of orders lower than that of the CP to be esti-
mated. Sucla priori knowledge is not always available. For example,

Median-Based Cyclic Polyspectrum Estimation when a signal of interest is embedded in additive interference and noise,
even if the interference does not exhibit cyclostationarity at the consid-
Antonio Napolitano and Chad M. Spooner ered orderV, cycle frequency, and conjugation configuration [3], the

3 submanifolds of the composite signal depend not only on the lower
order cycle frequencies of the signal of interest but also on those of the
Abstract—in this paper, median-based estimation methods for the cyclic jnterference.
polyspectrum are proposed. The algorithms do not requirea priori knowl- : : : : .
edge of the3 submanifolds, that is, they do not require the knowledge of New estimation algorithms for the CP are prqposed in this paper.
all of the lower order cycle frequencies of the time-series available for the 11€S€ methods are based on the use of the median as a measure of the
estimation of the cyclic polyspectrum. Therefore, such methods are partic- average value of a set of quantities rather than the arithmetic mean,
ularly useful when the cyclostationarity of the signals under consideration which is used in all previously proposed estimators. The application of
ist_notl corl‘r1pletefl¥hknowlr_1. Thle proptosed estimtahtors clzlon;/?rge to the thheo- the median to estimation of the CP is suggested by the results in [6], in
retical values of the cyclic polyspectrum when the collect time approaches _ , . . : . )
infinity and the spect);al repso?/ut?on becomes infinitesimal. Furtﬁgrmore, which ve_lrlous rOt_)USI _measures qf the average, including .the me(ﬁan,
their accuracy is very nearly the same as that of the usual time- and fre- are applied to estimation of the third-order cumulant of stationary time

quency-smoothed cyclic periodogram methods that usa priori knowledge — series with some success. In the present work, the median operation is

of lower-order cycle frequencies to avoid the3 submanifolds. applied to theVth-order cyclic periodogram or to a time- or frequency-
Index Terms—Cyclic polyspectrum estimation, cyclostationarity, higher SMoothed version of it, and this application obviates the neea for
order statistics. priori knowledge of the? submanifold of the time-series available for

the estimation. Therefore, the methods are thought to be particularly
useful for estimation scenarios in which a complete characterization of
the signal of interest and/or of the interference is not available.
In recent years, the theory of higher order cyclostationary signalsThe signal analysis framework adopted in this correspondence is that
has been developed in both the stochastic and fraction-of-time (FQ¥F)the FOT probability [2], [3]. The proposed algorithms work under
the mild assumption that time-shifted versions of the time series are
) ) ] ~asymptotically independent (in the FOT probability sense) so that the
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