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Perfusion-based functional magnetic resonance im-
aging (fMRI) using arterial spin labeling (ASL) meth-
ods has the potential to provide better localization of
the functional signal to the sites of neural activity
compared to blood oxygenation level-dependent
(BOLD) contrast fMRI. At present, experiments using
ASL have been limited to simple block and periodic
single-trial designs. We present here an adaptation of
the general linear model to perfusion-based fMRI that
enables the design and analysis of more complicated
designs, such as random and semirandom event-re-
lated designs. Formulas for the least-squares estimate
of the perfusion response and the F statistic for the
detection of a response are derived. Exact expressions
and useful approximations for detection power and
estimation efficiency are presented, and it is shown
that the trade-off between power and efficiency for
perfusion experiments is similar to that previously
observed for BOLD experiments. The least-squares es-
timate is compared with an estimate formed from the
running subtraction of tag and control images. The
running subtraction estimate is shown to be approxi-
mately equal to a temporally low-pass-filtered version
of the least-squares estimate. Numerical simulations
and results from ASL experiments are used to support
the theoretical findings. © 2002 Elsevier Science (USA)
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INTRODUCTION

Event-related experimental designs with random
and semirandom interstimulus intervals have become
increasingly popular for functional magnetic resonance
imaging (fMRI) because they circumvent some of the
problems, such as habituation, of more traditional
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block designs (Rosen et al., 1998) and offer variable
trade-offs between estimation efficiency and detection
power (Dale, 1999; Friston et al., 1999; Liu et al.,
2001a,b).

At present, the use of random and semirandom de-
signs has been limited to experiments using blood ox-
ygenation level-dependent (BOLD) contrast. Event-re-
lated experiments with perfusion-based fMRI using
arterial spin labeling (ASL) have been reported, but
have used periodic single-trial designs in which the
events are widely spaced at regular intervals (Liu and
Gao, 1999; Yang et al., 2000). Recent improvements in
the contrast-to-noise ratio and the temporal resolution
of ASL techniques (Wong et al., 2000), as well as the
potential of ASL to better localize functional activation
to neural activity (Duong et al., 2000; Luh et al., 2000),
make the application of ASL techniques to the entire
range of event-related designs increasingly attractive.

The design of event-related perfusion experiments is
complicated by the fact that the perfusion image is
formed from the difference between a control image in
which the magnetization of arterial blood is fully re-
laxed and a tag image in which the magnetization of
arterial blood is inverted. Typically, tag and control
images are acquired in an interleaved fashion, reduc-
ing the temporal resolution of the experiment. To im-
prove the effective temporal resolution for periodic sin-
gle-trial designs, two strategies have been proposed: (a)
acquire separate tag and control runs and (b) shift the
timing of the stimulus with respect to that of the ac-
quisition (Liu and Gao, 1999; Yang et al., 2000). The
first method cannot be applied to certain ASL se-
quences, such as turbo-PICORE (proximal inversion
with control for off-resonance effects) tagging, in which
the interleaving of tag and control images is an inte-
gral part of the technique (Wong et al., 2000). In addi-
tion, the use of two separate runs may not be appro-
priate for cognitive experiments in which the response
of the subject may vary from run to run. The extension
of the second method to more complicated designs,
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such as randomized designs, is not obvious.
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In this paper, we present a framework for the design
and analysis of perfusion fMRI experiments. This
framework encompasses previously described methods
and provides a means of analyzing and understanding
the performance of perfusion fMRI experiments with
any design that may be of interest. The structure of the
paper is as follows. We first present a general linear
model for perfusion fMRI experiments and then derive
expressions for the least-squares estimate of the per-
fusion response and the F statistic for detection of a
response. Next we derive exact and approximate ex-
pressions for the estimation efficiency and detection
power of perfusion experiments and show that the
trade-off between efficiency and power is similar to
that previously reported for BOLD experiments (Liu et
al., 2001b). We also present a formal definition of per-
fusion estimates based upon a running subtraction of
tag and control images. We show that the running
subtraction estimate is approximately equal to a tem-
porally low-pass-filtered version of the least-squares
estimate and discuss the potential advantages of the
running subtraction estimate. Results from numerical
simulations and ASL experiments are used to vali-

date the theoretical framework. Portions of this paper
have been described in preliminary form (Liu et al.,
2001c).

THEORY

Basic Concepts

Experimental designs for perfusion imaging can be
described with an extension of the general linear model
(Friston et al., 1995) commonly used in fMRI by making
use of two observations. First, it is useful to treat the time
series of tag images separately from the time series of
control images. Second, the observed time series are typ-
ically acquired at a reduced sampling rate. For example,
with interleaved tag and control images, the sampling
rate of each series is reduced by a factor of 2 or more
compared to a noninterleaved (e.g., BOLD) experiment.

To illustrate these observations, we outline in Fig. 1
the elements of an ASL experiment. In a typical ASL
experiment, the tag and control images are interleaved
as shown in Fig. 1e. The period between subsequent
images is TR, the repetition time of the acquisition

FIG. 1. Diagram showing the steps of convolution, downsampling, and interleaving in an ASL experiment.
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pulse sequence. We denote the period between subse-
quent tag (or control) images as TA, where for typical
interleaved experiments, TA � 2TR. We can think of
forming the ASL time series by interleaving a tag time
series ytag with a control time series ycon, both shown in
Fig. 1d.

We next examine how ytag and ycon are formed and
will find it useful to consider for a moment the mea-
sured responses from a noninterleaved ASL experi-
ment (e.g., Liu and Gao, 1999) in which there are
separate tag and control runs. With the assumption of
a general linear model, the measured response during
each run, ignoring constant terms and low-frequency
confounds, is given by the convolution of the stimulus
pattern and the hemodynamic response. Thus, the re-
sponse during the tag condition is given by xtag � htag,
where � denotes convolution and xtag and htag are the
tag stimulus pattern and hemodynamic response, re-
spectively. Similarly, the response during the control
condition is given by xcon � hcon. Examples of these
sequences are shown in Figs. 1a, 1b, and 1c, where both
xtag and xcon are equal to the 6-element binary sequence
[1, 0, 1, 1, 0, 0] and both htag and hcon are 3-element
sequences. We define TS as the time between the ele-
ments in the stimulus pattern. This period determines
the time resolution of the experiment, for both inter-
leaved and noninterleaved cases, meaning that esti-
mates of the hemodynamic response will have a tem-
poral resolution equal to TS. In preparation for the
general linear model framework, we rewrite the convo-
lution products as matrix multiplication products, such
that xtag � htag � Xtaghtag and xcon � hcon � Xconhcon, where
Xtag and Xcon are design matrices whose columns are
formed from shifted versions of xtag and xcon, respec-
tively (Dale, 1999).

In a noninterleaved ASL experiment, we measure all
the data points in Xtaghtag and Xconhcon, usually in sep-
arate runs. By contrast, for an interleaved ASL exper-
iment, we measure a subset of the data points because
we alternate between measuring a point from Xtaghtag

and a point from Xconhcon. Thus, as shown in Figs. 1c
and 1d, the series of tag images ytag consists of every
even sample of Xtaghtag, while the series of control im-
ages ycon consists of every odd sample of Xconhcon. This
process is referred to as downsampling and can be
compactly described through the use of downsampling
matrices Dtag and Dcon, such that ytag � DtagXtaghtag and
ycon � DconXconhcon (Strang and Nguyen, 1997). For the
example shown, Dtag is a matrix which picks out every
even sample of Xtaghtag and Dcon is a matrix which picks
out every odd sample of Xtaghtag. To further clarify how
the convolution and downsampling operations work,
we expand the matrix expressions for ytag and ycon

using the stimulus patterns shown in Fig. 1. The ex-
pressions are as follows:

ytag � DtagXhtag

� �1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

��
1 0 0
0 1 0
1 0 1
1 1 0
0 1 1
0 0 1

��htag,1
htag,2
htag,3

�
� � htag,1

htag,1 � htag,3
htag,2 � htag,3

� ,

(1)
ycon � DconXhcon

� �0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

��
1 0 0
0 1 0
1 0 1
1 1 0
0 1 1
0 0 1

��hcon,1
hcon,2
hcon,3

�
� � hcon,1

hcon,1 � hcon,2
hcon,3

� .

In general, downsampling can be used to pick out
every Mth sample of a time series, where M is defined
as the downsampling factor. In the example shown in
Fig. 1, M is equal to 2. The sampling period TA of the
downsampled time series is related to the period TS of
the stimulus pattern by the equation TA � MTS. In this
paper we assume that M is an integer that is greater
than or equal to 1. The use of noninteger downsam-
pling factors is addressed under Discussion and Con-
clusion.

To demonstrate the use of downsampling in practice,
we consider three types of ASL experiments with
downsampling factors ranging in value from 1 to 4. We
assume in each case that the stimulus pattern is de-
fined on a 1-s time grid, i.e., TS is 1 s. M � 1 example:
Nonquantitative ASL data are acquired in a noninter-
leaved fashion with a close-tag continuous arterial spin
labeling (CASL) sequence (Wong et al., 2001) with a TR
of 1 s. That is, a series of tag images is followed by a
series of control images. In this case TA � 1 s and Dtag

and Dcon are both identity matrices. M � 2 example:
ASL data are acquired in an interleaved fashion with a
turbo-PICORE sequence (Wong et al., 2000) at a TR of
1 s. In this case TA � 2 s. M � 4 example: ASL data
are acquired in an interleaved fashion with a FAIR,
EPISTAR, or PICORE sequence (Wong et al., 1997) at
a TR of 2 s. In this case TA � 4 s. These examples are
summarized in Table 1.

General Linear Model

Equation (1) captures the essence of the ASL exper-
iment. In the absence of noise and other confounds, we
can directly compute htag and hcon from the observed
time series ytag and ycon, provided the matrices DtagXtag
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and DconXcon have full rank. To obtain a general linear
model, we add terms for noise and other confounds,
such that

�ytag
ycon

� � �DtagXtag 0p�k
0p�k DconXcon

��htag
hcon

�
� �Stag 0p�l

0p�l Scon
��btag

bcon
� � n,

(2)

where ytag and ycon are p � 1 vectors that represent the
observed tag and control time series, respectively, Xtag

and Xcon are N � k design matrices, htag and hcon are k �
1 parameter vectors, Dtag and Dcon are p � N downsam-
pling matrices, Stag and Scon are p � l matrices consist-
ing of nuisance model functions, btag and bcon are l � 1
vectors of nuisance parameters, and n is a 2p � 1
vector that represents additive Gaussian noise. The
notation 0p�k indicates a p � k matrix of zeros. We
define the dimension p as p � N/M, where M is the
downsampling factor defined above. For ASL experi-
ments in which tag and control images are interleaved
we require that Xtag be identical to Xcon, and we define
the common design matrix as X � Xtag � Xcon; for
noninterleaved experiments, such as those described in
Liu and Gao (1999), there is no such restriction. We
assume that the covariance of the noise vector n is
given by Cn � �2I, where I is the identity matrix and �2

is an unknown variance term that needs to be esti-
mated from the data.

The terms Stagbtag and Sconbcon in the linear model
represent nuisance terms such as a constant term, a
linear trend, and other low-frequency drifts. The pa-
rameter values associated with the constant terms are
of interest for determining the baseline perfusion
value, while the parameters associated with the other
nuisance terms are typically of no interest.

To simplify the presentation in the remainder of the
paper, we derive theoretical expressions using a sim-
plified model in which X � Xtag � Xcon and S � Stag �
Scon so that

�ytag
ycon

� � �DtagX 0p�k
0p�k DconX��htag

hcon
�

� � S 0p�l
0p�l S ��btag

bcon
� � n.

(3)

The expressions we derive for the simplified model are
easily modified to handle the more general model by
simply replacing X with Xtag and S with Stag whenever
X or S appears next to Dtag and applying a similar
transformation for Xcon and Scon. Following Liu et al.
(2001b), we refer to the subspaces spanned by the
columns of X and S as the signal subspace �X� and the
interference subspace �S�, respectively. Note that this
is a slight abuse of notation since the signal subspaces
of ytag and ycon are spanned by the columns of DtagX and
DconX, respectively. We require �X� and �S� to be lin-
early independent but not necessarily orthogonal.

Estimation

Using the theory of oblique projections described in
Behrens and Scharf (1994), we may write the maxi-
mum likelihood estimates of the tag and control hemo-
dynamic responses as

ĥtag � �X TD tag
T P S

�DtagX��1X TD tag
T P S

�ytag,
(4)

ĥcon � �X TD con
T P S

�DconX��1X TD con
T P S

�ycon,

where PS
� � I � S(STS)�1ST is a projection matrix that

removes the part of a vector that lies in the inter-
ference subspace �S�. Note that in order for the esti-
mates to exist, the inverses (XTDtag

T PS
�DtagX)�1 and

(XTDcon
T PS

�DconX)�1 must exist or equivalently PS
�DtagX

and PS
�DconX must have full rank. When M is greater

than 1, a sufficient, but not necessary, condition for
rank deficiency is for the events, i.e., 1’s in the stimulus
pattern, to be constrained to lie on a time grid with a
spacing of TA/m � MTS/m, where m is the largest
integer value less than M � 1 for which M/m is an

TABLE 1

Examples of Downsampling in ASL Experiments

Method TR (s) TA (s) M Dtag Dcon

Noninterleaved close-tag CASL 1 1 1 �1 0
0 1� �1 0

0 1�
Turbo-PICORE 1 2 2 �1 0 0 0

0 0 1 0� �0 1 0 0
0 0 0 1�

FAIR, EPISTAR, or PICORE 2 4 4 �1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0� �0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0�
Note. For all examples, the sample period TS of the stimulus pattern is assumed to be 1 s and the dimension p of the observed time series

is equal to 2. The dimensions of the stimulus patterns are N � 2, 4, and 8 for CASL, turbo-PICORE, and FAIR (also EPISTAR or PICORE),
respectively.
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integer. As an example, if M � 4, TA � 4 s, and TS � 1
s, then m � 2 is the largest integer less than M � 1 �
3 for which M/m is an integer, and TA/m � 2 s. Thus,
the inverses will fail to exist if the events in the stim-
ulus pattern are constrained to occur at times that are
multiples of 2 s, e.g., the inverses do not exist for a
periodic design with TS � 1 s in which there is a 1 in
the binary stimulus pattern every 20 s, with all other
elements of the pattern being set to zero. This design
can be modified to avoid rank deficiency in the follow-
ing ways. If the spacing between events is required to
be uniform for the entire experiment than the spacing
can be set to an odd number of seconds (e.g., an event
every 21 s) as was done in Miller et al. (2000). If the
spacing between events is required to be an even num-
ber of seconds, then stimulus shifting can be used at
certain points within a run (Liu and Gao, 1999) or
across runs (Yang et al., 2000) to move the events off
the 2-s time grid, e.g., a spacing of 20 s between events,
except for a spacing of 21 s between two consecutive
events at a point approximately halfway through the
run. Note that the condition stated above is a sufficient
but not necessary condition—i.e., there exist full rank
design matrices X that do not satisfy the condition, but
nevertheless have rank deficient PS

�DtagX and PS
�DconX.

An estimate of the perfusion response can be formed
from the difference of ĥcon and ĥtag. In addition, for
most pulsed ASL techniques the sum of ĥcon and ĥtag

yields an estimate of the BOLD response (Wong et al.,
1997). That is,

ĥperf � ĥcon � ĥtag,
(5)

ĥBOLD � ĥcon � ĥtag.

For periodic single-trial designs, these estimates are
analogous to those previously reported in the literature
(Liu and Gao, 1999; Yang et al., 2000). The covariance
matrix for both estimates is given by Cĥperf � CĥBOLD �
�2(XTDtag

T PS
�DtagX)�1 	 �2(XTDcon

T PS
�DconX)�1 and may be

used to evaluate the estimation efficiency, a measure of
the ability of a design to characterize the hemodynamic
response. A useful definition of efficiency is the inverse
of the sum of the variances of the components of ĥperf

(Seber, 1977; Dale, 1999),

� �
1

Trace
Cĥperf
�

�
1

� 2Trace
�XTD tag
T P S

�DtagX��1

� �X TD con
T P S

�DconX��1�

.

(6)

Detection

Detection refers to the problem of deciding if a per-
fusion response occurred. It can be formally stated as

the test of the null hypothesis ĥperf � 0. To derive the
statistic used to test this hypothesis, we rewrite the
simplified model of Eq. (3) in the form y � Z� 	 n,
where

y � �ytag
ycon

� , � � �
htag
hcon
btag
bcon

� ,

Z � �DtagX 0p�k S 0p�l
0p�k DconX 0p�l S �.

(7)

The hypothesis ĥperf � 0 is then equivalent to the hy-
pothesis that A� � 0 where A � [�Ik�k Ik�k 0k�2l] and
Ik�k is the k � k identity matrix. The F statistic for
testing this hypothesis has the form

F �
�2p � 2k � 2l�

k

�̂ TA T
A�ZTZ��1A T� �1A�̂

RSS
, (8)

where RSS � (y � Z�̂)T(y � Z�̂) is the residual sum of
squares for the full model and �̂ � (ZTZ)�1ZTy (Seber,
1977). If F is below a certain threshold, we accept the
hypothesis ĥperf � 0 and conclude that there was no
perfusion response; otherwise, we reject the hypothe-
sis and conclude that a perfusion response occurred.
Substituting for A, Z, and �, we may rewrite the F
statistic as

F �
�2p � 2k � 2l�

k

ĥ perf
T 
�X TD tag

T P S
�DtagX��1

� �X TD con
T P S

�DconX��1� �1ĥperf

RSS
.

(9)

Detection power is a measure of the ability of a
design to detect an activation (Liu et al., 2001b). For-
mally, it is the probability that we detect a perfusion
response when a perfusion response is actually
present. When a response is present, the F statistic
follows a noncentral F distribution with noncentrality
parameter (Scharf, 1991).

� � h perf
T C ĥperf

�1 hperf /� 2. (10)

For a given threshold on the F statistic, the detection
power (i.e., the integral of the noncentral F distribution
for values above the threshold) increases with the non-
centrality parameter. Thus, the noncentrality param-
eter serves as a useful metric for the detection power of
a design. As shown in Liu et al. (2001b), it is useful to
normalize the noncentrality parameter by the energy
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hperf
T hperf of the parameter vector to obtain the Rayleigh

quotient

R �
h perf

T C ĥperf

�1 hperf

� 2h perf
T hperf

, (11)

which will serve as the metric for detection power for
the remainder of the paper.

Performance of Designs

All experimental designs offer a trade-off between
estimation efficiency and detection power. As shown in
Liu et al. (2001b), this trade-off is fundamental because
it depends on the distribution of the eigenvalues of
Cĥperf

�1 . Estimation efficiency is maximized when the
eigenvalues are equal, while detection power is max-
imized when one eigenvalue is dominant.

To gain further insight into the trade-off between
efficiency and power for perfusion experiments it is
useful to introduce the approximations

X TD con
T P S

�DconX � XTD tag
T P S

�DtagX �
1

M
X�

TX�, (12)

where X� � PS̃
�X is the design matrix with constant

and nuisance terms removed from each column, S̃ is
the N � l matrix with nuisance model functions such
that S  DtagS̃  DconS̃, and PS̃

� � I � S̃(S̃TS̃)�1S̃T.
These approximations are valid when the columns of X
consist of shifted binary stimulus patterns and reflect
the fact that Dtag picks out approximately 1/M of the 1’s
in the stimulus pattern while Dcon picks out the other
half. Under certain conditions (e.g., a periodic single-
trial design and S consisting of only a constant term)
the approximation becomes an equality.

Using the approximations in Eq. (12) and assuming
unit noise variance leads to the following approximate
expressions for estimation efficiency and Rayleigh quo-
tient:

� �
�

2M

1

Trace
�X�
TX�� �1�

, R �
�

2M

hperf
T X �

TX�hperf

h perf
T hperf

.

(13)

Note that the assumption of unit variance for the
noise-normalized expressions is valid because the noise
variance enters as the same scaling factor of 1/�2 in
both Eqs. (6) and (11) and therefore does not change
the relation between the efficiency and the Rayleigh
quotient. Aside from the factor of �/(2M), these expres-
sions are identical in form to those for the efficiency
and Rayleigh quotient of a BOLD contrast experiment

with design matrix X (Liu et al., 2001b). The scaling
factor � is determined empirically by comparing the
expressions in Eq. (13) with those in Eqs. (6) and (11).
The introduction of this empirical scaling factor is nec-
essary because approximation errors in Eq. (12) are
amplified when computing the matrix inverses of each
of the terms for use in Eqs. (6), (11), and (13). For most
designs, � ranges from 0.7 to 1.0 for M � 2 and from 0.5
to 1.0 for M � 4, with � � 1 corresponding to the case
in which the approximations in Eq. (12) become equal-
ities (e.g., periodic single-trial design).

Because the approximate expressions for estimation
efficiency and Rayleigh quotient are identical in form
to those previously derived for BOLD experiments, the
theory describing the performance of BOLD experi-
ments (Liu et al., 2001b) also provides insight into the
performance of perfusion experiments. In short, ran-
domized designs achieve optimal estimation efficiency
but relatively poor detection power, whereas block de-
signs maximize detection power at the cost of minimal
estimation efficiency. Semirandom designs that lie be-
tween randomized and block designs offer intermedi-
ate trade-offs between efficiency and power.

To illustrate the performance of designs and the
validity of the approximations in Eq. (13), we calcu-
lated the efficiencies and Rayleigh quotients for eight
experimental designs ranging from a block design to a
randomized design. Each design consisted of 128 time
points with 64 events. The block design consisted of
four on/off cycles and the semirandom designs were
obtained by randomly permuting this block design
(Buxton et al., 2000). The randomized design was ob-
tained by generating 1000 patterns with a uniform
distribution of 1’s and selecting the pattern that pro-
vided the greatest estimation efficiency for the BOLD
experiment. The dimension of the perfusion response
was k � 15, and the interference subspace consisted of
only a constant term (i.e., l � 1). For computation of the
Rayleigh quotient, hperf was a gamma density function
of the form

h
 j� �� C � �	n!��1� j�t/	� nexp��j�t/	�, (14)

where C � 1, 	 � 1.2, n � 3, and �t � 1. For each
design, the efficiencies and Rayleigh quotients of per-
fusion experiments with M � 2 and M � 4 were com-
puted using the expressions in Eqs. (6) and (11). In
addition the efficiency and Rayleigh quotient of the
BOLD experiment were computed using the expression
in Eq. (13) and omitting the factor of �/(2M).

Figure 2 shows calculated estimation efficiencies and
Rayleigh quotients for perfusion and BOLD experi-
ments. For comparison with the BOLD efficiency and
Rayleigh quotient, the perfusion metrics are scaled by
2M/� with � � 1 for the block design and � equal to 0.83
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and 0.71 for M � 2 and M � 4, respectively, for the
other designs. The values of � for the nonblock designs
were chosen empirically to provide the best fit between
the BOLD and the perfusion metrics. The agreement
between the BOLD and the scaled perfusion metrics is
fairly good and demonstrates the validity of the ap-
proximate expressions in Eq. (13). The fundamental
trade-off between estimation efficiency and detection
power is apparent for both BOLD and perfusion exper-
imental designs.

It is important to point out that Fig. 2 does not imply
that, after taking into account the factor of �/(2M), the
actual estimation efficiency and detection power of a
BOLD experiment are approximately the same as the
efficiency and power of a perfusion experiment. In fact,
the BOLD and perfusion metrics may differ signifi-
cantly because of both differences in the shapes and
amplitudes of the BOLD and perfusion hemodynamic
responses and differences in the noise characteristics
of the BOLD and ASL experiments. The simulation
results do not reflect these potential differences be-
cause they were computed using normalizations and
assumptions that were useful for demonstrating the
fundamental trade-off between efficiency and power.
Specifically, the normalized metrics stated in Eq. (13)
assume unit noise variance, and the presence of the
denominator term in the Rayleigh quotient normalizes
for differences in the hemodynamic response ampli-

tudes. In addition, the same shape for the BOLD and
perfusion hemodynamic responses was assumed.

Covariance of Perfusion and BOLD Estimates

In ASL experiments in which both perfusion and
BOLD estimates are formed, it is of interest to examine
the covariance between the two estimates. This is
given by the expression

CĥBOLD,ĥperf
� E
�ĥBOLD � E
ĥBOLD���ĥperf � E
ĥperf��

T�

� � 2�X TD con
T P S

�DconX��1 � � 2�X TD tag
T P S

�DtagX��1,

(15)

where E[�] denotes expectation. Using the approxima-
tion stated in Eq. (12), we find that the covariance
between the estimates is approximately zero for most
designs and is identically zero for designs (e.g., periodic
single trial) for which Eq. (12) is an equality. It is
important to note that Eq. (15) is the statistical corre-
lation between the random errors in the perfusion and
the BOLD estimates and does not provide information
about systematic errors that reflect the physics of the
ASL experiment. In practice, the perfusion estimate
will tend to be higher than the actual perfusion re-
sponse due to BOLD contrast weighting of the tag and
control images, and the BOLD estimate will tend to be

FIG. 2. Trade-off between estimation efficiency and detection power (Rayleigh quotient) for BOLD experiments and perfusion experi-
ments with M � 2 and M � 4. Efficiency and power for perfusion experiments are scaled as indicated in the legend, except that � � 1 for
the block design. Unit noise variance is assumed.
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lower than the actual BOLD response due to the effect
of inflowing magnetic spins (Wong et al., 1997). These
effects can be minimized by using short echo times in
the imaging sequence and by applying an in-plane
presaturation pulse prior to the tag and control pulses.

Running Subtraction Estimates

Perfusion experiments with block designs have typ-
ically used a running subtraction of the tag and control
images to form a time series of perfusion images. The
subtraction may be either a pairwise difference of ad-
jacent tag and control images or the difference of each
image from the average of the previous image and the
next image (Wong et al., 1997). Running subtraction
approaches have the advantage of significantly reduc-
ing the effects of low-frequency drifts and motion-re-
lated artifacts. However, the applicability of a running
subtraction type approach to event-related perfusion
experiments has been questioned (Liu and Gao, 1999;
Yang et al., 2000). Here we present a formal definition
of the running subtraction approach and examine the
applicability of the approach to event-related perfusion
experiments.

The running subtraction approach is equivalent to
separately interpolating the tag and control time series
to the desired time resolution and then forming the
difference of the interpolated time series. That is, we
first form the interpolated time series ỹtag � GUtagytag

and ỹcon � GUconycon, where ỹtag and ỹcon are both N � 1
vectors, Utag and Ucon are N � p matrices that upsample
by a factor of M, and G is a N � N low-pass-filtering
matrix. For example, with M � 2 and N � 4, we would
have

Utag � �
1 0
0 0
0 1
0 0

� , Ucon � �
0 0
1 0
0 0
0 1

� , G � �
1 0 0 0
1 1 0 0
0 1 1 0
0 0 1 1

�,

where the filtering matrix G implements a low-pass
finite impulse response (FIR) filter g � [1 1]. From the
interpolated tag and control time series, we form a
perfusion time series yperf � ỹcon � ỹtag.

The interpolated time series yperf is an approximation
of the perfusion time series that we would obtain if we
could simultaneously measure tag and control images.
The approximate general linear model is therefore
yperf  Xhperf 	 S̃b 	 n, from which we may form an
estimate,

h̃perf � �X TP S̃
�X��1X TP S̃

�yperf. (16)

For binary stimulus patterns, we show in the Appendix
that a very good approximation is

h̃perf � G̃ĥperf, (17)

where G̃ is a k � k matrix that implements a normal-
ized version of the FIR filter g that corresponds to the
N � N matrix G. In addition, we require that the
frequency response of the filter has zeros at multiples
of FS/M, where FS � 1/TS is the sampling frequency of
the stimulus pattern, and that the bandwidths of both
Xh and the low-frequency nuisance terms are less than
FS/M.

Equation (17) states that under certain conditions
the running subtraction estimate is approximately
equal to a filtered version of the direct estimate ob-
tained using the general linear model in Eq. (2). To
demonstrate the validity of this approximation and
also to show the effect of different downsampling fac-
tors and FIR filters, we simulated the estimation pro-
cess for two experimental designs, both with TS � 1 s.
These were a periodic single-trial design with 12 1-s-
long events spaced at 21-s intervals and a randomized
design with 64 1-s-long events randomly distributed on
a 1-s grid over a 256-s interval. Tag and control re-
sponses were constructed by convolving the binary
stimulus patterns with a gamma density function [Eq.
(14)] with parameters 	 � 1.2, n � 3, �t � 1 (Boynton
et al., 1996), and C � �1 for tag and C � 2 for control.
In addition, constant offsets of 1000 and 1000.4 were
added to the tag and control responses, respectively.
The convolved responses were downsampled by a fac-
tor of either M � 2 or M � 4, and direct estimates ĥperf,
running subtraction estimates h̃perf, and filtered direct
estimates G̃ĥperf were computed. For the M � 2 case,
running subtraction and filtered direct estimates were
calculated using one of two FIR filters: g � [1 1] or g �
[1 2 1]/2. Note that the filter g � [1 1] is the shortest
filter that satisfies the requirement that the FIR filter
has zeros in the frequency response at multiples of
FS/2 and corresponds to pairwise subtraction of adja-
cent tag and control images. The filter g � [1 2 1]/2
places two zeros at each multiple of FS/2 and corre-
sponds to taking the difference of each image from the
average of the previous image and the next image as
was done in Wong et al. (1997). This is also equivalent
to linearly interpolating, by a factor of 2, the acquired
tag and control time series. For the M � 4 case, the
estimates were calculated using either g � [1 1 1 1] or
g � [1 2 3 4 3 2 1]/4. The filter g � [1 1 1 1] is the
shortest filter with zeros in the frequency response at
multiples of FS/4, while the filter g � [1 2 3 4 3 2 1]/4
places two zeros at each multiple of FS/4 and imple-
ments a linear interpolation of the acquired tag and
control time series by a factor of 4.

The estimated responses are shown in Figs. 3 and 4.
Note that since noise was not included in these simu-
lations, the direct estimate ĥperf is identical to the ideal
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response hperf, which is not shown. The running sub-
traction estimates and filtered direct estimates have
been shifted in time to take into account the delay of
the FIR filters used. As an example, with M � 4 and
g � [1 1 1 1], the running subtraction estimate is time
shifted by 1.5 s with respect to the direct estimate,
since the delay of the filter is 1.5 s. For each combina-
tion of downsampling factor, filter, and stimulus pat-
tern, the running subtraction estimates show excellent
agreement with the filtered direct estimates, thus sup-
porting the validity of the approximation stated in Eq.
(17). In each case, the running subtraction estimate
shows a decrease in amplitude and a broadening in
temporal width compared to the direct estimate, re-
flecting the effects of the low-pass FIR filter g. For M �
2, the full widths at half-maximum (FWHM) of the
running subtraction estimates for both the periodic
and the randomized designs are 5.0 and 5.1 s for g �
[1 1] and g � [1 2 1]/2, respectively, representing an

increase of 0.1 and 0.2 s compared to the 4.9-s FWHM
of the direct estimate. For M � 4, the FWHM of
the running subtraction estimates for the periodic
designs are 5.6 and 6.2 s for g � [1 1 1 1] and g �
[1 2 3 4 3 2 1]/4, respectively, representing increases of
0.7 and 1.3 s compared to the direct estimate FWHM.
The corresponding FWHM for the randomized designs
are slightly smaller and are 5.5 and 6.0 s. Note that the
effects of the FIR filter decrease as the bandwidth of
the filter increases, so that in practice it is desirable to
use the filter with the widest bandwidth possible, e.g.,
g � [1 1] and g � [1 1 1 1] for M � 2 and M � 4,
respectively.

As mentioned previously, running subtraction esti-
mates have the potential advantage of reducing the
effects of low-frequency drifts and motion-related arti-
facts. Thus, in experiments with significant artifacts,
the running subtraction estimate h̃perf may be prefera-
ble to the direct estimate ĥperf if the effects of the FIR

FIG. 3. Perfusion hemodynamic response estimates for periodic and random stimulus patterns and downsampling factor M � 2. The
“Direct Estimate” is ĥperf, the “Running Subtraction” estimate is h̃perf, and the “Filtered Direct” estimate is G̃ĥperf. FIR filters g � [1 1] and
g � [1 2 1]/2 are used in the top and bottom rows, respectively.

277EVENT-RELATED PERFUSION fMRI: ANALYSIS AND DESIGN



filter are acceptable. As a preliminary test of this hy-
pothesis, we performed a numerical simulation in
which a step discontinuity was added to the tag and
control time series. These are shown in Figs. 5a and 5b
for periodic single-trial and randomized designs, re-
spectively. The ideal response hperf, the direct estimate
ĥperf, and the running subtraction estimate h̃perf for M �
4 and filter g � [1 1 1 1] are shown in Figs. 5c and 5d.
For the periodic design, the direct estimate ĥperf is
severely affected by the discontinuity, while the run-
ning subtraction estimate h̃perf is much less affected
and shows good agreement with the ideal response.

EXPERIMENTAL EXAMPLES

As a preliminary demonstration of the estimation of
the perfusion response with different designs, down-
sampling factors, and analysis methods, we conducted
experiments using a periodic single-trial design (24

1-s-long events spaced at 21-s intervals) and a random-
ized design (128 1-s-long events randomly distributed
on a 1-s grid over a 512-s interval). The time resolution
TS is 1 s for both designs. The total length of each
experiment (with initial off periods) was 8 min 36 s.
Imaging was performed on a 1.5-T GE Signa LX Echo-
speed system with a standard birdcage headcoil. A
PICORE tagging sequence (Wong et al., 1997) with
TR � 2 s was used to obtain ASL data with a M � 4
downsampling factor. A turbo-PICORE tagging se-
quence (Wong et al., 2000) with TR � 1 s was used to
obtain ASL data with M � 2. For both sequences, the
thickness of the tag region was 10 cm and the gap
between the tag and the edge of the imaging slice was
1 cm. Readout was performed with a dual-echo single-
shot spiral trajectory (Glover, 1999). Other imaging
parameters were echo times of 3 and 30 ms, 1100-ms
inversion time, 24-cm field of view with a 64 � 64
matrix. The subject performed sequential finger tap-

FIG. 4. Perfusion hemodynamic response estimates for periodic and random stimulus patterns and downsampling factor M � 4. The
“Direct Estimate” is ĥperf, the “Running Subtraction” estimate is h̃perf, and the “Filtered Direct” estimate is G̃ĥperf. FIR filters g � [1 1 1 1] and
g � [1 2 3 4 3 2 1]/4 are used in the top and bottom rows, respectively.
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ping paced by a flashing checkerboard, and one 8-mm
axial slice through the primary motor cortex was im-
aged.

To select voxels for analysis, a block design run (30 s
on/off, four cycles) with turbo-PICORE was performed.
Activated voxels were identified by correlating the per-
fusion time series with a boxcar reference function and
thresholding with a correlation coefficient of 0.5. Clus-
tering of the activated voxels was performed by dis-
carding those voxels with fewer than two nearest
neighbors. Average time courses were formed for the
clustered regions and estimates of the perfusion re-
sponses were obtained from the average time courses
for the first echo data.

Figure 6 shows direct and running subtraction esti-
mates of the perfusion responses using data from the
PICORE and turbo-PICORE experiments. The esti-
mates were calculated using Eqs. (5) and (16), where
the dimension of the interference subspace was 4 with
Legendre polynomials of order 0 to 3 forming the col-

umns of the matrices S and S̃. As was done under
Theory, the running subtraction estimates have been
shifted in time with respect to the direct estimates to
compensate for the delay of the FIR filters used. In
agreement with the simulation results, the degree of
temporal broadening and reduction in amplitude ob-
served in the running subtraction estimates is much
greater in the PICORE estimates compared to the tur-
bo-PICORE estimates, reflecting the smaller band-
width of the filter used for the PICORE estimates. The
amplitudes of the perfusion responses for the random-
ized design are smaller than those for the periodic
single-trial design. This decrease in amplitude is con-
sistent with the presence of neural and hemodynamic
nonlinearities (Buxton et al., 2001). Finally, it is im-
portant to note that the estimation procedures used
here are equally applicable to experiments with other
ASL methods. For example, the estimation procedure
for a FAIR experiment would be identical to that used
here for PICORE.

FIG. 5. Simulation of the effect of artifacts on estimates. The tag and control time series for periodic and random stimulus patterns are
shown in (a) and (b), respectively, with the vertical dotted lines showing the position of the step discontinuity. The ideal perfusion response
and direct and running subtraction estimates with M � 4 and g � [1 1 1 1] are shown in (c) and (d).

279EVENT-RELATED PERFUSION fMRI: ANALYSIS AND DESIGN



DISCUSSION AND CONCLUSION

We have presented a general framework for the de-
sign and analysis of perfusion-based event-related
fMRI experiments. The framework is based on a gen-
eral linear model in which the interleaving of tag and
control images is represented by downsampling matri-
ces. Using this model, we derived exact expressions for
the estimate of the perfusion response, an F statistic
for detection of the response, and the estimation effi-
ciency and detection power of the experimental design.
Of key importance is the fact that these expressions
are valid for all designs of interest. Previous treat-
ments have focused on periodic single-trial designs.

The trade-off between estimation efficiency and de-
tection power is an important factor to consider when
choosing a design (Liu et al., 2001b). We have derived
approximate expressions for efficiency and power that
show that the trade-off for perfusion experiments is
similar to those previously reported for BOLD experi-
ments. It is important to note that, while these approx-

imate expressions are useful for understanding the
nature of the trade-off, the exact expressions [i.e., Eqs.
(6) and (11)] should be used whenever selecting a de-
sign.

One of the advantages of perfusion experiments is
that the interleaving of tag and control images can be
useful in reducing the effects of motion-related arti-
facts since the subtraction of adjacent images removes
offsets that are common to both the tag and the control.
It has previously been stated that running subtraction
approaches are not valid for event-related experiments
because they use tag and control images from different
time points (Liu and Gao, 1999; Yang et al., 2000). Our
theoretical and experimental results show that the
running subtraction estimate is a temporally low-pass-
filtered version of the direct estimate. The low-pass
filtering introduces temporal broadening and a reduc-
tion in amplitude of the running subtraction estimate
compared to the direct estimate. For some experi-
ments, such as turbo-PICORE with TR � 1 s and M �

FIG. 6. Direct estimates and running subtraction estimates for PICORE and turbo-PICORE with periodic single-trial and randomized
designs. The filters used for the running subtraction estimates are g � [1 1] for turbo-PICORE and g � [1 1 1 1] for PICORE.
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2, these effects are small and probably acceptable. For
other experiments, such as PICORE with TR � 2 s and
M � 4, the effects are more significant due to the
smaller bandwidth of the filter that is required, and the
use of the running subtraction estimate should proba-
bly be reserved for instances in which the direct esti-
mate is severely degraded by artifacts.

The theoretical framework presented in this paper
can be expanded in several areas. First, the framework
can be extended to handle noninteger downsampling
factors. Rational downsampling factors such that M �
p/q where p and q are integers can be accommodated by
replacing the downsampling matrices in Eq. (2) with a
product of three matrices, where the first matrix up-
samples by a factor of q, the second matrix filters the
upsampled time series, and the third matrix down-
samples by a factor of p (Strang and Nguyen, 1997).
Second, we have assumed that the additive noise term
n in Eq. (2) is uncorrelated with covariance Cn � �2I.
The expressions for estimation efficiency and detection
power are readily modified to accommodate the general
case in which the covariance matrix is not a multiple of
identity, and it would be of interest to see how the
structure of the noise covariance affects the trade-off
between efficiency and power. In addition, the effect of
noise on the running subtraction estimate requires
further investigation.

The experimental examples presented here serve as
a preliminary demonstration of the application of the
theoretical framework. There are a number of interest-
ing experimental questions that are beyond the scope
of this paper and could be addressed in future work. In
our examples we used turbo-PICORE and PICORE as
the ASL methods. A detailed and thorough comparison
of the estimates obtained with these two techniques
would be useful for understanding how the technical
details of an ASL method affect the estimation process.
In addition, such a comparison could be extended to
other ASL methods, such as FAIR. As stated in Eq. (5),
estimates of the BOLD response may also be formed
from the experimental data, and it would be of interest
to compare the perfusion and BOLD estimates ob-
tained with different ASL methods and stimulus pat-
terns. For example, a detailed study of the reduction in
response amplitudes observed for a randomized exper-
iment compared to a periodic single-trial study would
be useful in understanding the impact of neural and
hemodynamic nonlinearities on the perfusion and
BOLD signals.

APPENDIX

We want to show that h̃perf  G̃ĥperf where h̃perf �
(XTPS

�X)�1XTPS̃
�G(U cony con � U tagy tag) and ĥ perf �

(XTD con
T PS

�D conX)�1XTD con
T PS

�y con � (XTD tag
T PS

�D tagX)
� XTDtag

T PS
�ytag. It is sufficient to derive the approxima-

tions (XTPS̃
�X)�1XTPS̃

�GUconycon  G̃(XTDcon
T PS

�DconX)�1

� XTD con
T PS

�y con and (XTPS̃
�X)�1XTPS̃

�GU tagy tag 
G̃(XTDtag

T PS
�DtagX)�1XTDtag

T PS
�ytag. We present here a

derivation of the first of these approximations. The
derivation of the second is nearly identical. The steps
in the derivation are as follows:

�X TP S̃
�X��1X TP S̃

�GUconycon

� �X TP S̃
�X��1X TP S̃

�P S̃
�GD con

T ycon

� �X TP S̃
�X��1X TP S̃

�GD con
T P S

�ycon

� G̃�XTP S̃
�X��1X TP S̃

�D con
T P S

�ycon

� G̃�XTD con
T PS̃

�DconX��1X TD con
T P S

�ycon.

The first step is based on the identities Ucon � Dcon
T

and PS̃
� � PS̃

�PS̃
�. The second step is valid if the approx-

imations (a) PS̃
�GDcon

T DconXh  GDcon
T PS

�DconXh and (b)
PS̃

�GDcon
T Sbcon  0 are reasonable. One requirement for

both approximations to hold is that the nuisance terms
are limited to low-frequency components (i.e., a con-
stant term and low-frequency drift terms). Approxima-
tion (b) holds in this case because both PS̃

� and PS
�

remove only very low-frequency terms and do not
greatly affect the replicated frequency domain images
of DconXh, which are at multiples of FS/M. In addition
the bandwidth of Xh should be less than FS/M. This is
true for most designs of interest and typically encoun-
tered hemodynamic responses (typical full width at
half-maximum bandwidth of about 0.1 Hz). As an ex-
ample, in an experiment which lasts for 120 s with FS

equal to 1 Hz and M � 4, the lowest frequency domain
image will be centered at 0.25 Hz and the nuisance
terms will have frequencies below about 0.017 Hz (e.g.,
allowing for a nuisance term with two cycles within the
120 s). In order for approximation (b) to hold an addi-
tional requirement is that the frequency response of
the filter implemented by G has zeros at multiples of
FS/M. For example, for M � 4, the approximation is
valid for a filter with coefficients [1 2 3 4 3 2 1]/4 but not
for a filter with coefficients [1 4 8 10 8 4 1]/10. These
nulls in the frequency response are critical in removing
the usually large constant term that is replicated in
the frequency domain at multiples of FS/M by the
downsampling process. The third step relies on the
fact that G implements an interpolation filter and
(XTPS̃

�X)�1XTPS̃
� may also be viewed as a filtering

matrix since it deconvolves the effects of the experi-
mental stimulus pattern. Because filtering is a com-
mutative operation, we can use the approximation
(XTPS̃

�X)�1XTPS̃
�G  G̃(XTPS̃

�X)�1XTPS̃
� where G̃ imple-

ments the same filter as G with appropriately modi-
fied dimensions. In addition, the coefficients of G̃ are
normalized so that the gains at zero frequency of G̃ and
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DconG are identical. The final step makes use of the
approximation in Eq. (12) and the approximation
PS̃

�Dcon
T PS

�DconXh  Dcon
T PS

�DconXh. The justification for
this last approximation is similar to that for approxi-
mation (a) in step 2.
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