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Abstract: The linearity of the cerebral perfusion response relative to stimulus duration is an important
consideration in the characterization of the relationship between regional cerebral blood flow (CBF),
cerebral metabolism, and the blood oxygenation level dependent (BOLD) signal. It is also a critical
component in the design and analysis of functional neuroimaging studies. To study the linearity of the
CBF response to different duration stimuli, the perfusion response in primary motor and visual cortices
was measured during stimulation using an arterial spin labeling technique with magnetic resonance
imaging (MRI) that allows simultaneous measurement of CBF and BOLD changes. In each study, the
perfusion response was measured for stimuli lasting 2, 6, and 18 sec. The CBF response was found in
general to be nonlinearly related to stimulus duration, although the strength of nonlinearity varied
between the motor and visual cortices. In contrast, the BOLD response was found to be strongly nonlinear
in both regions studied, in agreement with previous findings. The observed nonlinearities are consistent
with a model with a nonlinear step from stimulus to neural activity, a linear step from neural activity to
CBF change, and a nonlinear step from CBF change to BOLD signal change. Hum. Brain Mapping 13:1–12,
2001. © 2001 Wiley-Liss, Inc.
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INTRODUCTION

Functional magnetic resonance imaging (fMRI) de-
tects activation in the brain by measuring changes in
the MR signal during neural stimulation. The most
common technique, blood oxygenation level depen-

dent (BOLD) fMRI, is sensitive to changes in the con-
centration of deoxyhemoglobin in small local blood
vessels [Kwong et al., 1992; Ogawa et al., 1992; Ban-
dettini et al., 1992]. A decrease in deoxyhemoglobin
concentration follows activation in response to a dis-
proportionately large increase in cerebral blood flow
(CBF) accompanying a smaller increase in the cerebral
metabolic rate of oxygen (CMRO2) [Fox and Raichle,
1986; Fox et al., 1988]. However, the details of these
dynamics are complicated and poorly understood, in-
volving cerebral blood volume (CBV) in addition to
CBF and CMRO2. In this work, we consider these
physiological responses to arise in the pathway dia-
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grammed in Figure 1. Recent advances in perfusion
imaging with arterial spin labeling (ASL) enable in-
creasingly accurate measurement of the timecourse of
local CBF during neural activity [Kim, 1995; Ye et al.,
1997; Wong et al., 1998]. Simultaneous measurement
of the CBF and BOLD responses to a stimulus allows
us to begin to explore the connections sketched in
Figure 1.

An important aspect of these dynamics concerns
which steps in the transformation from stimulus to
measured response are linear and time invariant. Un-
der such a relationship, the output physiological re-
sponse would (1) exhibit the linear property of super-
position (i.e., a weighted sum of input waveforms
would produce a weighted sum of the individual out-
put responses) and (2) be independent of input timing
(i.e., a time shift in the input would cause the same
time shift in the output response). Steps that are linear
and time invariant would be simple to describe and
would exhibit a number of convenient properties. In
addition to modeling considerations, these character-
istics have important implications for a number of
experimental paradigms (such as event-related fMRI)
[Dale and Buckner, 1997; Liu and Gao, 1999; Duyn et
al., 2000; Yang et al., 2000] and data processing
schemes (such as correlation analysis) [Bandettini et
al., 1993], which assume that fMRI signal dynamics
bear a linear, time-invariant relationship to the stim-
ulus. Specifically, the BOLD response is often modeled
as a convolution of the stimulus pattern with a smooth
hemodynamic impulse response function (which may
vary spatially [Lange and Zeger, 1997]), such as a
Gaussian or gamma-variate function. The usefulness
of this type of model makes a detailed characterization
of the relationship between stimulus and response
worthwhile. Even if the hemodynamic processes of
interest do not linearly follow stimulus presentation, a

linear approximation may be quite accurate in certain
circumstances [Friston et al., 1998; Glover, 1999].

Previous studies have demonstrated a nonlinear re-
lationship between stimulus and BOLD response, in
terms of both stimulus duration and magnitude. The
BOLD response to short-duration stimuli cannot in
general be used to linearly predict the response to
long-duration stimuli in the visual [Boynton et al.,
1996; Vazquez and Noll, 1998; Hoge et al., 1999], au-
ditory [Robson et al., 1998; Glover, 1999], or motor
[Glover, 1999] cortices. However, some of these stud-
ies also report that the BOLD response begins to be-
have linearly when the short-duration response used
for the prediction is longer than some threshold du-
ration, estimated at 4–6 sec in the visual [Boynton et
al., 1996; Vazquez and Noll, 1998] and auditory corti-
ces [Robson et al., 1998]. Other work has examined the
linearity of the BOLD response to stimulus magni-
tude, finding BOLD to be nonlinearly related to visual
stimulus contrast [Boynton et al., 1996; Vazquez and
Noll, 1998] and word presentation rates [Rees et al.,
1997; Buchel et al., 1998; Friston et al., 1998]. The
nonlinearities observed have generally taken the form
of overprediction of response magnitude and under-
prediction of response duration. These nonlinearities
in the BOLD response suggest that care should be
taken in applying techniques that assume a linear
relationship between stimulus and BOLD response.

The linearity of the perfusion (CBF) response is, to
date, not as well studied as the BOLD response. Pre-
vious work has produced conflicting results concern-
ing the linearity of the CBF response in different brain
regions, with a PET study finding a linear relationship
between word presentation rate and perfusion [Rees
et al., 1997] and ASL perfusion studies finding a non-
linear relationship between visual stimulus contrast
and perfusion [Hoge et al., 1999; Yang et al., 2000].
Because changes in CBF are only one component of
the BOLD effect, we do not necessarily expect to find
the same nonlinearities in the CBF response as in the
BOLD response. Simultaneous measurement of these
two responses allows us to separate BOLD nonlineari-
ties that arise in the steps between stimulus and CBF
from those that are introduced in the transition from
flow response to BOLD response.

In this article, we consider the transformations from
the stimulus to the perfusion and BOLD responses by
studying the effect of varying stimulus duration. Our
goal is to characterize these dynamics using a single
experimental paradigm in two areas of the brain. We
consider whether the perfusion response is linearly
related to the stimulus, verify previous findings of the
nonlinear relationship between stimulus and BOLD

Figure 1.
Diagram of the transformation from stimulus presentation to
BOLD response. At each step in the model, nonlinearities may be
introduced.
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effect, and discuss the implications of our observa-
tions in terms of the model shown in Figure 1. This
study is motivated by an interest in clarifying the
differences between BOLD and perfusion fMRI in or-
der to better understand the role that perfusion tech-
niques may play in functional neuroimaging. Prelim-
inary reports on this work were presented previously
[Miller et al., 1999, 2000].

EXPERIMENTAL METHODS

Stimulus presentation

All experiments presented here follow the same
stimulus presentation design. The initial 20 and final
10 sec of each presentation run were without stimulus.
The remainder of the run consisted of eight identical
cycles of stimulus presentation for some fixed dura-
tion (2, 6, or 18 sec) followed by 19 sec without stim-
ulus. For each subject, two runs were collected for
each stimulus duration, for a total of 16 cycles of
presentation at each duration. An additional run of the
18-sec stimulus was collected on each subject for the
sole purpose of selection of activated voxels.

The above experimental design was used in sepa-
rate experiments with two stimulus types, chosen to
elicit a strong response from either the primary visual
or primary motor cortex. The visual stimulus was a
black-and-white radial checkerboard pattern flicker-
ing at 8 Hz and projected onto a screen inside the
scanner bore. The visual stimulus during rest periods
was a small white fixation cross at the center of a black
visual field. The motor stimulus consisted of sequen-
tial bilateral finger tapping cued by the occurrence of
the visual stimulus from the visual experiment. Sub-
jects were instructed to tap at a constant, comfortable
rate. Visual stimuli were presented using PsyScope
[Cohen et al., 1993]. The visual experiment was per-
formed on three subjects and the motor experiment
was performed on four subjects. Informed consent
was obtained from all subjects in accordance with
local institutional review board guidelines.

Data acquisition

ASL data was collected in each experiment using an
echo-planar QUIPSS II [Wong et al., 1998] pulse se-
quence (TR 5 2,000 ms, TE 5 30 ms, TI1 5 700 ms,
TI2 5 1,400 ms) with 8-mm thick slices. This technique
gathers images in alternating conditions of tag (mag-
netic tagging of arterial blood) and control (no tag-
ging). The perfusion signal is the difference between
tag and control images, while the BOLD signal is

encoded in the average of tag and control conditions
[Wong et al., 1997]. Because BOLD is an additive
signal (control 1 tag) and flow is a difference signal
(control 2 tag), a simultaneous but independent mea-
surement of the two signal time series can be con-
structed from the same data set (assuming indepen-
dent Gaussian noise).

Data for the motor experiment was collected on a
GE Signa 1.5 T scanner fitted with a local gradient
head coil [Wong et al., 1992]. A PICORE QUIPSS II
sequence captured a field of view of 24 cm with 3.75 3
3.75 mm2 in-plane resolution. Three contiguous 8-mm
thick axial slices through the primary motor cortex
were acquired, although only the most activated slice
for each subject was included in data analysis. Data for
the visual experiments was collected on a Siemens
Vision 1.5 T scanner with a receive-only flexible sur-
face coil centered on the occipital cortex. This setup
enables tagging of the arterial blood to be performed
with the transmit body coil, improving the quality of
the tag over a gradient head coil. An EPISTAR
QUIPSS II sequence captured a field of view of 48 cm
with 3.75 3 3.75 mm2 in-plane resolution, which was
later windowed down to a 24-cm field of view (images
being acquired at the larger field of view to improve
the signal-to-noise ratio). The visual experiment ac-
quired an 8-mm thick oblique axial slice along the
calcarine fissure. The use of different scanning hard-
ware for the two experiments is not expected to affect
our results, although further experiments to test this
would be worthwhile.

Data processing

Regions of interest (ROIs) were selected from the
additional 18-sec stimulus run, which was not in-
cluded in the final data. The use of a separate run
enables the identification of activated voxels indepen-
dent of the data used in later analyses, eliminating bias
in the comparison of the responses to stimuli of dif-
ferent duration. Because our primary goal was to char-
acterize the CBF response and because the largest
BOLD signals tend to originate in draining veins
where there are only minor perfusion changes [Buxton
et al., 1997], voxels were selected based on the flow
signal in the additional run. This run was collapsed
into a single cycle of stimulus response by averaging
the measured raw data timecourses for each stimulus
cycle. The flow signal was then calculated from this
average cycle by subtracting each image from the
average of the image before and image after. This
single cycle of flow was correlated with a trapezoidal
stimulus reference function at each voxel [Bandettini
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et al., 1993] and activated voxels were identified by
thresholding the correlation coefficients (where the
threshold ranged from 0.55 to 0.85, chosen for each sub-
ject as the correlation coefficient at which the identified
voxels were confined to the cortical region of interest).

Images were spatially registered using AFNI soft-
ware [Cox, 1996] and the CBF and BOLD responses to
single cycles of stimulus were calculated as follows.
Because the length of each stimulus cycle (an odd
number of seconds) was asynchronous with image
acquisition (every 2 sec), the signal over four consec-
utive stimulus cycles contains a control and a tag
image at each second of the stimulus cycle (see Fig. 2).
A single short run of four consecutive stimulus cycles
was generated by averaging the two identical runs of
eight cycles together and then averaging the first and
second halves of the resulting average. Single-cycle
BOLD and flow responses were then generated with
1-sec time resolution, BOLD as the average signal
(control 1 tag) and flow as the difference signal (con-
trol 2 tag) at each time point.

This calculation of the flow signal interleaves the
measurements acquired over different stimulus cycles,
allowing low frequency effects in the raw signal (e.g.,
amplitude or baseline drifts) to alias to high frequen-
cies in the flow signal. The subtraction of a fourth-
order polynomial from each pixel timecourse imme-
diately after registration was able to remove
significant baseline drifts without interfering with the
8-cycle stimulus pattern. In addition, variation of the
BOLD response in different cycles of stimulus presen-
tation will also produce low frequency effects that
could alias into the calculated flow signal. Because the
flow signal is much smaller than the raw signal, these
aliasing effects can be significant. Complete removal

of this artifact would require significant smoothing,
degrading the temporal resolution of the response
curves to 4 sec or more. Rather than increase the
temporal resolution by such a large amount, we ap-
plied a smoothing filter with a full width at half max-
imum (FWHM) of 2 sec, which did not completely
remove the aliased artifact but did make it less prom-
inent. A single flow and BOLD curve for each stimulus
type and duration were calculated for each subject by
averaging the smoothed single-cycle response in acti-
vated voxels.

Linearity analysis

In order for a physiological response to be a linear
and time-invariant transformation of the stimulus, the
response to a particular stimulus must be described by
the convolution of the stimulus presentation pattern
with the response to a very brief stimulus (for suffi-
ciently short stimuli, the latter response is called the
impulse response). In other words, one requirement of
linearity is that the response to a long stimulus should
be equal to an appropriately shifted and summed
series of short responses. We tested the linearity of our
data by summing shifted replicas of the response to
short stimuli to match the duration of longer stimuli.
For example, the 2-sec response was replicated three
times, shifted by 0, 2, and 4 sec, and then summed.
This summation was then compared to the observed
response to the 6-sec stimulus. Our experimental par-
adigm enabled three such comparisons: in addition to
the above comparison of the 2- and 6-sec responses,
we compared the 2- and 18-sec responses and the 6-
and 18-sec responses.

In a linear system, all order of moments of the
linearly predicted response and measured response
should be equal. Accordingly, we can establish statis-
tically significant departure from linearity by show-
ing, for any order of moment, a significant difference
between the predicted response moment and the mea-
sured response moment. For example, if the second-
order moment of the predicted and measured re-
sponses is significantly different, the response is
nonlinear even if lower-order moments do not differ.
The fractional moment difference of a predicted re-
sponse p(t) and a measured response m(t) was calcu-
lated for each of the linearity comparisons as:

Mn 5
* tnp~t!dt 2 * tnm~t!dt

* tnp~t!dt (1)

If Mn is significantly different from zero, the nth mo-
ment of the predicted response does not equal the nth

Figure 2.
Timing of imaging relative to stimulus presentation. Images are
acquired every 2 sec (TR 5 2 sec), alternating between control and
tag conditions. The presented stimulus is repeated with a period of
2n 1 1 seconds (n 5 3 above) so that over four consecutive
stimulus cycles, a control and a tag image are acquired at each
second of the stimulus cycle. The gray arrows illustrate tag and
control images that are gathered with 1-sec resolution over a
2-sec window of the stimulus cycle.
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moment of the measured response, and the system in
question is nonlinear.

RESULTS

The intersubject average curves for the different
stimuli are shown in Figure 3. Note that the high-
frequency ripple in the flow signal is caused by the
raw signal aliasing artifact mentioned earlier, and not
noise. The comparisons of the predicted versus mea-
sured curves are shown for the flow response in Fig-
ure 4 and for the BOLD response in Figure 5.

Although a linear model of flow tended to overpre-
dict the measured response (Fig. 4), the extent of over-
prediction was not consistent across the visual and
motor areas. In the visual cortex, a strong overpredic-
tion of the response magnitude change was observed
for all three comparisons performed. This overpredic-
tion ranged from about 1.53 the measured response
(for the prediction of the 18-sec response by the 6-sec
response) to about 2.43 (for the prediction of the
18-sec response by the 2-sec response). In the motor
cortex, however, only a small overprediction of about
1.33 was observed when the 2-sec response was used
to predict the 6-sec response, and both the 2- and 6-sec
responses predict the amplitude of the 18-sec response
reasonably well.

Our linearity analysis of the BOLD response (Fig. 5)
found that the linear model consistently overpredicted

Figure 3.
Average flow and BOLD signal measurements. Each experiment
consisted of 16 repetitions of three durations of motor or visual
stimulus (2, 6, and 18 sec) followed by a resting period with no
stimulus (19 sec). The measurements shown are the intersubject
average response to a single cycle of stimulus. Responses are
expressed as percent signal change from baseline.

Figure 4.
Linear, time-invariance analysis of
motor and visual flow data shown in
Figure 3. Plot titles indicate the du-
ration of the short- and long-dura-
tion responses used in each analysis.
Linearity was tested by appropri-
ately replicating, shifting, and sum-
ming the measured response to a
short-duration stimulus. If flow is a
linear transformation of the stimu-
lus, this superposition (solid gray
lines) should predict the measured
response to the long-duration stim-
ulus (dotted black lines). A mismatch
of the predicted and measured long-
duration responses indicates a non-
linear response. The flow response
in the motor cortex appears to be
nearly linear (with a slight overpre-
diction of the 6-sec response),
whereas the flow response in the
visual cortex behaves nonlinearly.
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the peak response magnitude in both the visual and
motor cortices, with the motor cortex showing some-
what smaller overpredictions (1.3–1.63 the measured
response) than the visual cortex (1.4–2.03). In both
cortices, the smallest overprediction occurred when
the 6-sec response was used to predict the 18-sec re-
sponse. Previous studies have reported that BOLD
begins to conform to the linear model in this range
[Boynton et al., 1996; Robson et al., 1998; Vazquez and
Noll, 1998]. However, the data presented in each of
these studies shows evidence for subtle nonlinear ef-
fects. Although our 6-sec response does not predict the
18-sec response with a linear model, it is a better linear
predictor than the 2-sec response in the sense that the
amount of overprediction is less severe.

The fractional moment difference Mn was calculated
for n 5 0–5 for each of the linearity comparisons
shown in Figures 4 and 5 using individual subject
data. The mean and standard deviation of Mn were
then calculated for each linearity comparison. Figure 6
shows the mean (61 SD) of Mn for the first three
moments (moments 3–5 are not shown, as these re-
sults are similar to M1 and M2). None of the calculated
fractional moment differences of the motor flow re-
sponse deviate significantly from linearity. In contrast,
the visual flow response shows a significant departure
from nonlinearity, which is manifested as an overpre-
diction of moment magnitude. The BOLD response is
significantly nonlinear for all comparisons except the

2-sec prediction of the 6-sec motor response. Like the
visual flow response, the predicted moments for the
BOLD response are significantly larger than the mea-
sured moment.

DISCUSSION

In contrast to the BOLD response, which has con-
sistent nonlinearities in both the primary visual and
motor cortices, the nonlinearity of the flow response
differs between the two regions, with a nearly linear
motor flow response but a strong nonlinear visual
flow response. Both the flow and BOLD response non-
linearities take the form of an overprediction of the
response magnitude of long duration responses by
short duration responses. To investigate possible
sources of nonlinearities, we consider the pathway
from stimulus to BOLD introduced earlier (Fig. 1). We
would like to consider at which of these steps the
observed nonlinearities are introduced. Although the
measured BOLD responses in the two studied regions
exhibited similar nonlinearities, our response pathway
attributes these nonlinearities to different sources. The
flow response to the motor stimulus was nearly linear,
indicating that most of the nonlinearities observed in
the motor BOLD signal change were introduced in the
transformation from the flow response to BOLD re-
sponse. In contrast, the flow response to the visual
stimulus had strong nonlinearities similar to the

Figure 5.
Linear, time-invariance analysis of
motor and visual BOLD data shown
in Figure 3. Plot titles indicate the
duration of the short- and long-du-
ration responses used in each anal-
ysis. Linearity was tested by appro-
priately replicating, shifting, and
summing the measured response to
a short-duration stimulus as in Fig-
ure 4. The BOLD response in both
the visual and motor cortices is non-
linearly related to stimulus duration.
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BOLD response, indicating that most of the BOLD
nonlinearities were already present in the perfusion
response. Hence, nonlinearities appear to arise both in
the steps from stimulus presentation to flow response
and from flow response to BOLD effect. We consider
whether specific nonlinearities that are known to be
introduced in these steps are sufficient to describe the
nonlinearities found in our data.

The perfusion response

Our goal in fMRI experiments is to observe the
neural response to a stimulus, which is known in
general to be a nonlinear transformation of the stim-
ulus. A linear relationship between neural activity and
flow response could therefore exist such that all non-
linearities in the flow response are already present in
the neural response. Such a scenario would indicate
that flow measurements provide a fairly simple way
to accurately observe the (nonlinear) neural response
to a stimulus. We wish to consider whether such a

relationship is consistent with our results, given what
is known about nonlinearities in neural activity.

For the first step of the response pathway from
stimulus to neural response, we model known nonlin-
earities involving neural adaptation. Neural adapta-
tion in this case refers to the general tendency of the
neural firing rate to decay from a high initial value to
a lower steady-state value during a sustained stimulus
[Rieke et al., 1997]. This classic pattern has been ob-
served in numerous recordings of cell firing rates [e.g.,
Albrecht et al., 1984; Maddess et al., 1988; Bonds,
1991]. Neural adaptation has previously been pro-
posed as a source of BOLD nonlinearities in the visual
cortex [Boynton et al., 1996] and in the auditory cortex
[Robson et al., 1998]. Our parameterization of the neu-
ral response to a block stimulus that begins at t 5 0
and ends at t 5 T is:

n~t! 5 H 1 1 ae2t/tn 0 # t , T
0 otherwise (2)

Figure 6.
Fractional moment differences (mean 61 SD) calculated according
to Eq. 1 for the zeroth, first, and second moments (top to bottom)
from individual subject data. Intersubject averages of the linearity
comparisons are shown in Figures 4 and 5. A response is nonlinear

if Mn is significantly different from zero for any n. The motor CBF
response is not significantly nonlinear, but the visual CBF and
BOLD responses are in general nonlinear.
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with parameters tn, a decay time constant, and a, the
amount that the initial response overshoots the
steady-state response. This model has a disproportion-
ately large response to short stimuli because of the
transient overshoot of the neural firing rate following
stimulus onset. Note that although this model is non-
linear in general, it is a linear transformation of the
stimulus when a 5 0, representing a neural response
that exactly follows the input stimulus pattern. Al-
though we have no measurements of the neural re-
sponse, we can fit our flow data simultaneously to this
neural response model and a model for the transition
from neural response to flow.

For the step from neural response to CBF, we con-
sider a simple linear, time-invariant transformation in
which the neural response is convolved with a gam-
ma-variate function, a common model for the hemo-
dynamic impulse response [e.g., Boynton et al., 1996]:

h~t! 5
c

thm! S t 2 td

th
Dm

e2~t2td!/th (3)

with parameters th, td, c and m. This flow impulse
response model is simply a smoothing kernel that
blurs the neural response. The blurring effect is con-
trolled by the parameters th, the time constant for the
kernel’s falling edge, and m, which affects the shape of
the function (with larger values of m increasing the
kernel’s symmetry, making it look more Gaussian).
The td and c parameters delay and scale the response
but do not affect its shape.

Convolving the nonlinear neural response model
(Eq. 2) with the hemodynamic impulse response (Eq.
3) yields a single model relating the stimulus to the
flow, as shown in Figure 7. This two-step model for
the flow response was simultaneously fit to the aver-

age 2-, 6-, and 18-sec motor and visual flow responses
shown in Figure 3, yielding a best fit model for each
brain area. The model fits and their parameters are
shown in Figure 8, and the model responses are
shown in Figure 9. The model response curves for
each region are generated by varying the input stim-
ulus duration (T) for a fixed set of model parameters.
These fits demonstrate that our flow data is consistent
with a linear, time-invariant transformation of an
adaptive neural response model.

The flexibility of this model (which has six param-
eters) enables a number of parameter sets to give a
good fit to our data. In this fitting, our goal was to test
whether variations in the parameter a with similar
impulse response functions could account for the ob-
served data. For this reason, a was the primary pa-
rameter that was varied, and the remaining parame-
ters fine-tuned the shape of the response models. We
found that a large difference in a (3.0 in visual and 0.25
in motor) combined with similar impulse response
functions (FWHM of 6.2 sec in visual and 5.2 sec in
motor) provides a reasonable account for the data.
Recall that the a parameter determines the degree of
adaptation exhibited by the neural response. A large
initial overshoot (strong adaptation) will cause the

Figure 7.
Model for the steps from block stimulus presentation to BOLD
response (based on the pathway introduced in Fig. 1). The neural
response is modeled as a nonlinear function of the presented
stimulus in which an initial strong response decays to a lower
steady-state value (Eq. 2). This neural response is convolved with
a flow impulse response model (the gamma-variate function of Eq.
3) to give the CBF response. This model for the CBF response is
a nonlinear function of the stimulus, but a linear transformation of
the neural response. Finally, the step from CBF to BOLD is
described by a scaling curve that saturates with increasing flow.

Figure 8.
Model functions fit to the motor and visual flow data shown in
Figure 3. These functions describe the steps from stimulus to
neural response (left subplot) and neural response to flow re-
sponse (right subplot). The convolution of these two forms (de-
scribed by Eqs. 2 and 3) were simultaneously fit to the measured
flow response to 2, 6, and 18-sec stimuli in the motor area (tn 5
0.25, td 5 0.65, a 5 0.25, th 5 1.25, c 5 65, m 5 3) and the visual
area (tn 5 0.5, td 5 1.5, a 5 3.0, th 5 1.5, c 5 54, m 5 3). Of the
parameters that effect the functional form of the model (a, tn, m,
and th), only a differs significantly across the two fits. The (nearly
linear) motor flow data is fit by a neural response with only a small
overshoot (a 5 0.25), whereas the (highly nonlinear) visual flow
data is fit by a neural response with a large overshoot (a 5 3.0).
Also note that the flow impulse responses fit to the motor and
visual data are quite similar, with FWHM of 5.2 sec (motor) and
6.2 sec (visual).
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flow response to short stimuli to be disproportionately
large, introducing nonlinearities like those found in
the visual data set. A smaller overshoot will make the
flow response more nearly linear (with linearity for
a 5 0). By varying a we are able to achieve the range
of nonlinearities observed in our flow data. The pa-
rameters for the flow model fit to the visual data (tn
and a) are within the range of those found in studies of
single-cell recordings in the visual cortex [Albrecht et
al., 1984; Maddess et al., 1988; Bonds, 1991].

It is important to note that the differences between
the motor and visual responses discussed here are not
necessarily fundamental characteristics of the visual
and motor cortices, but may reflect differences in the
neural response to self-initiated activity compared to
passive stimulation. Self-initiated stimulation, such as
finger tapping, may involve less neural adaptation
than stimuli such as passive viewing.

An interesting subtlety of the motor flow response
involves the small dip found in the average 2- and
6-sec responses. One result of such a dip is to coun-
teract the effect of a strong early response in a convo-
lution. In our motor flow data, the small overpredic-
tion of the 6-sec response by the 2-sec response is not
found when the prediction is extended to 18 sec (i.e.,
the 2-sec response slightly underpredicts the 18-sec re-
sponse). When the 6-sec prediction is shifted to give an
18-sec prediction, destructive interference of the peak
and dip yields a smaller peak response than if no dip
were present because the plateau level of a long-du-

ration response depends on just the total area under
the impulse response curve. Although our model does
not incorporate such a dip, neural responses with a
poststimulus dip have been reported in the visual
cortex [Smirnakis et al., 1997]. Note that the presence
of such a dip does not necessarily indicate nonlinear-
ity. For example, a system responding linearly to rates
of change can cause such a response.

The BOLD response

The measured BOLD response is consistently non-
linear in the studied brain areas, with short duration
responses overpredicting long duration responses.
Clearly, the nonlinearities discussed previously in the
flow response are implicitly present in the BOLD sig-
nal as well. Additional nonlinearities are introduced in
the transition from flow response to BOLD effect [Bux-
ton and Frank, 1997; Friston et al., 1998; Davis et al.,
1998; Liu et al., 2000]. Although the transient effects
that arise in the transition from flow response to
BOLD response make modeling these final steps in
Figure 1 complicated [see Buxton et al., 1998; Davis et
al., 1998], we can make some basic observations about
the relationship between the flow response and the
BOLD effect. The BOLD effect saturates at high levels
of flow as further increases in flow cause negligible
decreases in the concentration of deoxyhemoglobin.
This nonlinearity between the flow change and the
BOLD signal change is illustrated by the solid gray

Figure 9.
Flow model fits (solid gray lines)
and measured flow responses
(dotted black lines). The flow
models are generated from the
functions shown in Figure 8 by
varying the input stimulus dura-
tion.
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curve in Figure 10, which is similar to the model of
Davis et al. [1998]. This relationship causes linear es-
timates of the BOLD change at high levels of flow to be
overpredicted by linear extrapolation of the BOLD
change at low levels of flow (see Fig. 10).

It may seem surprising, given multiple sources of
nonlinearity in the BOLD signal, that the observed
flow nonlinearities are more varied than BOLD non-
linearities, which are fairly consistent across all mea-
surements. A plausible explanation for this phenom-
enon results from the interaction of nonlinearities in
the transition from stimulus to neural activity with
nonlinearities introduced between flow and BOLD.

For small neural adaptation effects (small a), the
peak flow response to short duration stimuli is small
compared to the steady state plateau level. In this case,
the step from flow response to BOLD effect scales
short duration (low flow) responses by a different
amount than it scales long duration (high flow) re-

sponses, resulting in the introduction of an overpre-
diction nonlinearity. As the strength of adaptation
effects in the neural response increases (larger a), the
flow response to short duration stimuli tends to peak
closer to the plateau level reached during long stimuli.
When peak flow changes are similar, there is little
nonlinearity in the scaling step from flow change to
BOLD signal change. In other words, when we com-
bine the effects of adaptation and saturation, we find
that a weak adaptation nonlinearity will tend to ac-
company a strong saturation nonlinearity, and vice
versa. Consequently, these two effects (adaptation of
the neural response and saturation of the BOLD sig-
nal) counteract each other to produce a nonlinearity in
the BOLD response that is more consistent than non-
linearities in the neural or CBF responses.

As shown by the simulation in Figure 11, this inter-
action is sufficient to produce model responses that
are very similar to our data. When a is small (as in our
motor data), representing a nearly linear neural re-
sponse, the flow response is nearly linear while the
BOLD response is distinctly nonlinear. In contrast,
when a is large (as in our visual data), representing a
strongly nonlinear neural response, the flow response
is strongly nonlinear, and little additional nonlinearity
is introduced in the final step from flow change to
BOLD signal.

Although the above explanation is framed in terms
of a flow response that is a linear transform of the
nonlinear neural response, our data cannot test this
linearity. For example, an alternative hypothesis is
that for brief stimuli the CBF response has the same
strength independent of stimulus duration [Glover,
1999]. This could be due to a nonlinear step between
neural activity and CBF change. However, the same
interplay of nonlinearities described above would ap-
ply even if the flow is a nonlinear transformation of
the neural response. That is, any system giving rise to
the observed flow nonlinearities will possess these
consistent BOLD nonlinearities when transformed ac-
cording to the flow-BOLD relationship described by
the saturating curve in Figure 10.

In the above discussion, we have ignored the poten-
tial effects of the poststimulus undershoot of the
BOLD signal [Buxton et al., 1999]. In this transient
effect, after the end of stimulation, the BOLD signal
drops from the activated state to below the steady-
state resting baseline, and then slowly rises back to
baseline. If sufficiently long rest periods are not al-
lowed for the response to return to baseline before
subsequent stimulation, the poststimulus undershoot
is known to cause an apparent shift in baseline [Frans-
son et al., 1998]. Because the primary focus of this

Figure 10.
Illustration of the interaction between neural adaptation nonlin-
earities and the saturation nonlinearity of the BOLD effect at high
levels of flow. The flow signal is assumed to be scaled according to
the saturation curve (solid gray line) to produce the BOLD signal.
For small adaptation nonlinearities (a nearly linear flow response
such as our motor measurements, a 5 0.25), the flow change
measured for short-duration stimuli is small (here, 22%) compared
to the flow response to long-duration stimuli (65%). In this case,
the effect of BOLD saturation is strong, and a linear prediction of
the long-duration BOLD response based on the short-duration
BOLD response (upper dashed black line) will yield a strong
overprediction. On the other hand, a strong adaptation nonlinear-
ity (i.e., a strongly nonlinear flow response such as in our visual
data, a 5 3.0) will cause even short-duration flow responses to
nearly reach the plateau value. The saturation nonlinearity has
little effect in this case (lower dashed line).
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work was to investigate the CBF response, which typ-
ically does not exhibit strong long-lasting under-
shoots, we used a relatively short rest period in order
to allow more stimulus cycles to be averaged and
improve the signal to noise ratio of the flow signal.
Our relatively short rest periods (19 sec) are likely to
cause baseline shifts in the BOLD signal, meaning that
an undershoot would certainly affect the measured
nonlinearities of the BOLD signal. However, the form
of the nonlinearity (overprediction or underpredic-
tion) depends on the details of how the undershoot
duration and amplitude scale with stimulus duration.
For example, a poststimulus undershoot that scales in
proportion to the primary (positive) BOLD signal
change would have a minor effect on the apparent
linearity of the BOLD signal measured with short
off-periods. Detailed studies using sufficiently long
off-periods (at least 60 sec) will be required to deter-
mine the effect of poststimulus undershoot on the
linearity of the BOLD response.

Another important consideration in the nonlinear
characteristics described here is the possible effects of
voxel selection criteria. Voxels were selected based on
a requirement of significant linear flow signal. While
this selection criterion does not affect our ability to
detect nonlinearity, it does mean that voxels with
extreme nonlinear flow responses (such as a spiked
response at the beginning of a stimulus that immedi-
ately returns to baseline for the remainder of the stim-
ulus) may have been excluded from our analysis. Al-

though no data currently supports this type of
response, this possibility warrants further study.

CONCLUSIONS

The CBF response to brief stimuli in the primary
motor and visual cortices is in general a nonlinear
function of stimulus duration, but the degree of non-
linearity varies strongly across the two regions. This
finding reflects the variability of the flow response but
not necessarily a characteristic difference between
these two cerebral regions. In contrast, the BOLD re-
sponse is consistently nonlinear, with the response to
shorter stimuli overpredicting the response to longer
stimuli. This pattern is consistent with a model in
which the steps from stimulus to neural activity and
from CBF change to BOLD signal change are de-
scribed by known nonlinearities, but the step from
neural activity to CBF change is linear. However, fur-
ther experiments directly comparing neural activity
with CBF changes will be required to establish this
linearity. Such a linear relationship would imply that
arterial spin labeling measurements of CBF change are
a more faithful reflection of neural activity than the
BOLD response.
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