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Physiological noise reduction for arterial spin labeling functional MRI
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Three methods for the reduction of physiological noise in arterial spin

labeling (ASL) functional magnetic resonance imaging (fMRI) are

presented and compared. The methods are based upon a general linear

model of the ASL measurement process and on a previously described

retrospective image-based method (RETROICOR) for physiological

noise reduction in blood oxygenation level dependent fMRI. In the first

method the contribution of physiological noise to the interleaved

control and tag images that comprise the ASL time series are assumed

to be equal, while in the second method this assumption is not made.

For the third method, it is assumed that physiological noise primarily

impacts the perfusion time series obtained from the filtered subtraction

of the control and tag images. The methods were evaluated using

studies of functional activity in the visual cortex and the hippocampal

region. The first and second methods significantly improved statistical

performance in both brain regions, whereas the third method did not

provide a significant gain. The second method provided significantly

better performance than the first method in the hippocampal region,

whereas the differences between methods were less pronounced in

visual cortex. The improved performance of the second method in the

hippocampal region appears to reflect the relatively greater effect of

cardiac fluctuations in this brain region. The proposed methods should

be particularly useful for ASL studies of cognitive processes where the

intrinsic signal to noise ratio is typically lower than for studies of

primary sensory regions.

D 2006 Elsevier Inc. All rights reserved.

Introduction

Arterial spin labeling (ASL) is a non-invasive magnetic

resonance imaging (MRI) method for the measurement of cerebral

blood flow (CBF) (Detre et al., 1992; Williams et al., 1992; Kim,

1995). Because CBF is tightly linked to neural activity, the use of

ASL to measure CBF can enhance the interpretation of functional

(fMRI) experiments. As compared to the blood oxygenation level
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dependent (BOLD) measures that are typically used in fMRI

studies, ASL measures have the potential of providing better

localization of the sites of neural activity (Luh et al., 2000; Duong

et al., 2001) since they reflect the delivery of blood to the capillary

beds, whereas BOLD can reflect deoxyhemoglobin in venules that

are far downstream from the sites of activity. In addition, ASL

methods have some practical advantages, including (i) an inherent

insensitivity to the low-frequency fluctuations commonly observed

in fMRI experiments (Aguirre et al., 2002; Wang et al., 2003b), (ii)

the ability to take advantage of imaging sequences (e.g. spin-echo)

that are insensitive to susceptibility induced off-resonance effects

(Wang et al., 2004) and (iii) the potential for less inter-subject

variability (Aguirre et al., 2002; Wang et al., 2003b; Tjandra et al.,

2005).

Despite their potential advantages, the use of ASL methods for

fMRI studies has been rather limited, especially for studies of

cognitive processes. A significant limitation of ASL methods is

their relatively low sensitivity as compared to BOLD-based

methods (Buxton, 2002). Improved sensitivity, either through an

increase in intrinsic signal or a reduction of noise, would greatly

enhance the utility of ASL for a broader spectrum of fMRI studies.

In this paper, we examine the improvement in sensitivity that can

be obtained through the reduction of noise due to physiological

sources.

Physiological fluctuations have been shown to be a significant

source of noise in BOLD fMRI experiments, especially at higher

field strengths (Kruger and Glover, 2001). A number of methods

have been developed for the reduction of physiological noise in

fMRI experiments. These include image based retrospective

correction (RETROICOR), k-space based retrospective correction

(RETROKCOR) and navigator echo based correction (DORK) (Hu

et al., 1995; Josephs et al., 1997; Glover et al., 2000; Pfeuffer et al.,

2002b). At present the application of these methods has been

focused primarily on BOLD experiments with a brief mention in

(Pfeuffer et al., 2002a) of the application of the DORK method to

ASL data acquired at 7 Tesla.

In this work, we consider several extensions of the RETROICOR

method for the reduction of physiological noise in ASL data.We first

present the extensions within the framework of a general linear

model (GLM) for ASL experiments and define a metric for assessing
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statistical significance. We then compare the performance of the

methods using experimental data obtained from functional ASL

studies of the visual cortex and hippocampal region.
Theory

General linear model for arterial spin labeling

In an arterial spin labeling (ASL) experiment, a series of control

images and tag images in which arterial blood is either fully

relaxed or magnetically inverted, respectively, is acquired (Golay et

al., 2004). Typically, the control and tag images are acquired in an

interleaved fashion and a perfusion time series is formed from the

filtered subtraction of control and tag images. In a previous paper

(Liu and Wong, 2005) we showed that ASL time series data could

be modeled as

y n½ � ¼ b n½ � sMM0 þ sqq n½ �
� �

þ �1ð Þn þ 1
b n½ �q n½ �ae�TI=T1B þ e n½ �

ð1Þ

where y[n] represents interleaved tag (even indices) and control

images (odd indices), b[n] represents multiplicative BOLD

weighting, q[n] is a term that is proportional to cerebral blood

flow (CBF), and e[n] represents additive noise. The remaining

parameters are defined as follows: T1 and T1B are the longitudinal

time constants of tissue and arterial blood, respectively; M0

represents the magnetization of static tissue in the imaging volume

of interest; TI and TIP represent inversion and pre-saturation times,

respectively; a denotes inversion efficiency; h denotes the action

of an optional pre-saturation pulse; and sM = 1–he –TIp/T1 and sq =

1–ae –TI/T1B.

For statistical analysis, it is convenient to rewrite Eq. (1) in

matrix form as

y ¼ smM0bþ sqq : bþ aexp �TI=T1Bð ÞM q :bð Þ

þ UcDcPcc þ UtDtPct þ e ð2Þ

where y, b, q, and e are the vector equivalents (each with

dimension N � 1 where N is the number of data points) of y[n],

b[n], q[n], and e[n], respectively, M is a N � N diagonal matrix

consisting of alternating �1 and 1 s along the diagonal, and q:b

denotes the Hadamard product of the two vectors (i.e. element-by-

element multiplication). The alternating �1 and 1 s in the matrix

M represent the modulation of the magnetization of arterial blood

in the interleaved tag and control images, respectively. We have

also added physiological noise terms UcDcPcc + UtDtPct where P

is a N � m matrix containing m regressors and cc and ct are

unknown regressor weights for the control and tag images,

respectively. The calculation of these regressors follows the

approach presented in (Glover et al., 2000) for the RETROICOR

method, and is described in detail in the appendix. The term

UcDcPcc represents physiological noise contributions to the

control images where Dc is a downsampling matrix that picks

out every odd sample of Pcc and Uc is an upsampling matrix that

inserts zeros between samples of DcPcc. The matrices Dt and Ut

are defined similarly, with Dt picking out even samples of Pct.

Examples of downsampling and upsampling matrices are given in

(Liu et al., 2002).

Most perfusion estimates are based upon filtered subtraction

methods that attenuate the un-modulated term smM0b + sqq :b
while preserving the modulated term aexp(–TI/T1B)M(q :b).

As shown in (Liu and Wong, 2005), this process can be

expressed as a modulation operation followed by a low pass

filtering operation

q̂q ¼ GMy ,G q : b̃b
� �

þGUcDcPcc �GUtDtPct þ n ð3Þ

where q̂ is a BOLD-weighted and filtered version of the true

perfusion signal q,G is a low pass filtering matrix, b̃ = ae –TI/T1Bb is

the BOLD-weighting term scaled by the constant term ae –TI/T1B,

and n is the additive noise after modulation and filtering. Note that

we have made use of the identities MUcDcPcc = UcDcPcc and

MUtDtPct = –UtDtPct. For the types of low-frequency noise that

are commonly observed in fMRI experiments, the covariance matrix

of the noise is well approximated as V = j2GGT (Liu and Wong,

2005) where j2 is assumed to be unknown. While the filtered

subtraction approach presented here should be nearly optimal for

block experimental designs that we address in this paper, alternate

approaches that directly solve a version of Eq. (2) may be preferable

for event-related designs, and are addressed in the Discussion

section (Liu et al., 2002; Hernandez-Garcia et al., 2005).

To form a general linear model, we model the BOLD-weighted

perfusion term q : b̃ as the sum of a constant term q0, which is

proportional to baseline CBF, and a dynamic term Xh representing the

time-varying portion of q : b̃, whereX is aN � k designmatrix and h is

a k � 1 vector of hemodynamic parameters. Note that this model does

not make any assumptions about the magnitude of the BOLD-

weighting in the q : b̃ term, so that the statistical tests described below

will assess the significance of activation related changes in BOLD-

weighted perfusion. However, given the short echo time acquisitions

used in this paper (TE = 9.1 ms and 2.8 ms for the visual and

hippocampal studies, respectively), the observed BOLD percent

changes (0.3 to 0.7% at TE = 9.1 ms and 0.1 to 0.4% at TE = 2.8

ms) are relatively small compared to the observed functional perfusion

changes of 40 to 100%. As a result, the statistical tests will primarily

reflect changes in perfusion (Liu and Wong, 2005).

In the case of a block design, X reduces to a vector

containing the smoothed stimulus pattern and h reduces to a

scalar representing the unknown amplitude. The constant term q0
plus other low frequency confounds are modeled as Sd, where S

is a N � l matrix comprised of l nuisance model functions and d

is an l � 1 vector of nuisance parameters. Integrating these

components into Eq. (3) yields the general linear model (GLM)

q̂q ¼ GXhþ SdþGUcDcPcc �GUtDtPct þ n ð4Þ

Physiological noise reduction methods

Within the framework of the GLM, physiological noise is

reduced by removing an estimate of the physiological noise terms

GUcDcPcc –GUtDtPct from the perfusion time series q̂. This

process can improve sensitivity by reducing the residual error that

would otherwise be included in the additive noise term n. The

efficacy of the noise removal process depends on how well the

noise is modeled. There are a number of plausible methods that

correspond to different model assumptions about the structure of

the physiological noise regressor matrix P and the regressor

weights cc and ct.

In this paper we consider three methods, where each method

reflects an assumption about the primary effect of the physiological

noise on the ASL time series and a corresponding assumption
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about the regressor weights in the model. The methods are defined

below and in Table 1.

Method 1

We assume that the primary effect of the noise is on the

acquisition of the tag and control images, and that this effect does

not differ between tag and control images. The corresponding

assumption about the regressor weights is that cc = ct = c where c

denotes the common value. This method may be considered a

direct extension of the RETROICOR method to the ASL tag and

control time series data.

Method 2

Here we assume that the relative weighting of the physiological

noise differs between the tag and control images. For example,

cardiac pulsations may affect how much blood is being tagged, and

thus have a greater effect on the tag images than on the control

images. The corresponding assumption about the regressor weights

is that cc m ct.

Method 3

We assume that the dominant effect of physiological noise is

due to the direct modulation of the perfusion time series, as

opposed to a modulation of the image acquisition process. This

assumption corresponds to a model of the form q̂ = GXh + Sd +

GPc + n, which is equivalent to the GLM in Eq. (4) with the

constraint that ct = –cc = –c. This method may be considered a

direct extension of the RETROICOR method to the perfusion time

series obtained from the filtered subtraction of the control and tag

images.

To understand the relative performance of the different

methods, we will also find it useful to consider a variation of

Method 2 in which we assume that the regressor weights are the

same for one component (e.g. for the respiratory component ct,R =

cc,R = cR with corresponding physiological noise matrix PR) but are

different for the other component (e.g. for the cardiac component

ct,C m cc,C with corresponding physiological noise matrix PC)

where the subscripts R and C denote respiratory and cardiac

components, respectively. This variation is referred to as Method

2a and is further described in Table 1.

Statistical tests

To compare the performance of the different methods, we use

two complementary metrics: (i) the multiple correlation coefficient

and (ii) the statistical significance (P value) of an activation. The
Table 1

Assumptions and definitions of matrices for the different methods

Method Assumptions PTOT cTOT

1 ct = cc = c G(UcDc –UtDt)P c

2 cc m ct [GUcDcP –GUtDtP] [cc ct]

2a cc,R = ct,R cc,C m ct,C [G(UcDc –UtDt)PR

GUc,CDc,CPC –GUt,CDt,CPC]

[cR cc,C ct,C]

3 ct = –cc = –c GP c

Method 2a is shown for the case of additional cardiac regressors. Swapping

the R and C subscripts yields Method 2a with additional respiratory

regressors. The subscript TOT (standing for total) is used to denote the

physiological regressor matrix PTOT and coefficient vector cTOT that contain

all the necessary elements for each method.
multiple correlation coefficient (defined below in Eq. (8)) is a

measure of how well the model Xh fits the data q̂ after nuisance

terms and physiological components have been projected out of

both the model and the data, whereas the P value represents the

probability of the data given that the null hypothesis of no

functional activation is true. In this work, an F-statistic is used to

compute the P value (see Eqs. (6) and (7) below). Methods with

better performance will tend to yield higher correlation coefficients

and lower P values. However, a method that achieves a higher

correlation coefficient may result sometimes in a higher P value if

there is an increase in the number of physiological regressors used.

This is because an increase in the number of regressors reduces the

degrees of freedom assigned to the additive noise component,

leading to a decrease in both the F-statistic and the effective

degrees of freedom of the F-distribution used in the computation of

the P value. As an example, an increase in the correlation

coefficient obtained with Method 2 as compared to Method 1

would reflect a better fit of the model to the data after physiological

noise has been removed. However, a modest improvement in the

model fit could be offset by the reduction in the degrees of

freedom, resulting in an increase in the P value.

To compute the desired metrics, we note that the models

corresponding to the different methods can be written in the form

q̂q ¼ X̃Xhþ Zaþ n ð5Þ

where X̃ =GX,Z = [S PTOT], a = [d
T cTOT

T ]T, and PTOT and cTOT for the

different methods and variations are defined in Table 1. The F-statistic

is then defined as

F ¼ Trace RVð Þq̂qTR0q̂q

Trace R0Vð Þq̂qTRq̂q
ð6Þ

where R0 = (Px̃z–Pz) and R = (I–Px̃z), and the projection matrices

are defined as Pz = Z(ZTZ)–1ZT and Px̃z = Q(QTQ)–1QT with Q =

[X̃ Z] (Worsley and Friston, 1995; Kiebel et al., 2003). Although not

required, the use of projection matrices simplifies notation and also

has a nice geometric interpretation as described in (Liu et al., 2001).

Briefly, the projection matrix R0 is used to project the data q̂ onto the

subspace that is both spanned by the columns of X̃ and orthogonal to

the columns of Z, thus giving the portion of the data that can only be

explained by X̃ (i.e. changes in perfusion). Similarly, R projects the

data onto the subspace that is orthogonal to the subspace spanned by

Q, thus yielding a residual noise term that represents the part of the

data that cannot be explained by either changes in perfusion (X̃) or

physiological noise and other nuisance terms (Z). Probability values

are computed using an Fr0,r distribution, where the degrees of

freedom taking into account the noise covariance are defined using a

Satterthwaite approximation (Worsley and Friston, 1995; Kiebel et

al., 2003) as

m0 ¼
Trace R0Vð Þ2

Trace R0VR0Vð Þ ; m ¼ Trace RVð Þ2

Trace RVRVð Þ ; ð7Þ

whereV = j2GGT, as previously noted below Eq. (3). We compute the

multiple correlation coefficient (Seber and Lee, 2003) as follows:

R ¼ q̂qTR0q̂q

q̂q R0 þ Rð Þq̂q

�� 1=2

: ð8Þ

Note that in contrast to the F-statistic, the terms in the multiple

correlation coefficient are not normalized by terms Trace(RV) and

Trace(R0V) that change with the number of physiological
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regressors. This is reflected in the following relation between the

multiple correlation coefficient and the F-statistic

R ¼ F ITrace R0Vð Þ=Trace RVð Þ
1þ F ITrace R0Vð Þ=Trace RVð Þ

�� 1=2

: ð9Þ

For brain regions such as the hippocampus where the intrinsic

signal-to-noise ratio (SNR) is low, multiple runs can be analyzed

together to improve the SNR. For these cases, Eq. (5) is expanded

to allow for different regressors for each run. For example, for two

experimental runs, the expanded GLM is

q̂q1

q̂q2

��
¼

��� X̃X
X̃X

���hþ Z1 0

0 Z2

��
a1
a2

��
þ n; ð10Þ

where the subscripts 1 and 2 correspond to the first and second

runs, respectively.
Methods

Imaging system

All experimental imaging data were collected on a GE Signa

Excite 3 Tesla whole body system with a body transmit coil and an

eight channel receive coil.

Visual cortex studies

Six healthy subjects (5 male; age 31 T 6 years old) participated

in the study after giving informed consent. During each imaging

session, the subject was presented with a visual stimulus consisting

of ‘‘on’’ periods of a full-field, full-contrast radial 8 Hz flickering

checkerboard with a small white fixation square at the center of the

screen and ‘‘off’’ periods of a black background with white fixation

square. Each imaging section consisted of four runs of a block

design paradigm with a 30s initial off period followed by four

cycles of 20s on and 40s off. Three oblique 8 mm slices through

the calcarine sulcus were imaged in a sequential fashion from

inferior to superior. Functional ASL data were acquired using a

PICORE-QUIPSS II tagging scheme (Wong et al., 1998) with a

dual echo spiral readout (TE1 = 9 ms, TE2 = 30 ms), interleaving

of tag and control images, TR = 2 s, number of repetitions = 130,

TI1/TI2 = 700/1400 ms, flip angle = 90, FOV 24 cm, and 64 � 64

matrix. Small bipolar crusher gradients were included to remove

signal from large vessels (b = 2 s/mm2).

Hippocampal studies

Seven healthy subjects (6 female; age 33 T 17 years) participated
in the study after giving informed consent. During each imaging

session, the subject was presented with a memory encoding task in

which a series of familiar and novel landscape scenes were viewed

(Stern et al., 1996). At the start of each session, the subject viewed 4

landscape images (2 with vertical and 2 with horizontal aspect ratio),

which served as the familiar images for the experiment. Each

experimental run used a block design paradigm, consisting of 5

cycles of 10 familiar and 10 novel images. Images were shown for 2

seconds with a 0.5 seconds gap between images. The sequence of

familiar images was changed between cycles, and no familiar image

occurred twice in a row. To maintain attention, the subject was asked

to decide whether each image had a horizontal or vertical aspect ratio
and to indicate their response with a two-button response box. A

total of three experimental runs were performed. Two runs from

subject 2 and one run from each of subjects 4 through 7 were

excluded from analysis due to excessive subject motion. Five

oblique 6 mm thick slices aligned with the hippocampus were

imaged in a sequential fashion from inferior to superior. Functional

ASL data were acquired using a PICORE-QUIPSS II sequence

(Wong et al., 1998) with a dual echo spiral readout (TE1 = 2.4 ms,

TE2 = 24 ms), interleaving of tag and control images, and TR = 2 s,

number of repetitions = 125, TI1/TI2 = 800/1400ms, flip angle = 90,

FOV 24 cm, and 64 � 64 matrix. High resolution structural scans

were acquired with a magnetization prepared 3D fast spoiled

gradient acquisition in the steady state (FSPGR) sequence (TI 450

ms, TR 7.9 ms, TE 3.1 ms, 12 degree flip angle, FOV 25� 25� 16

cm, matrix 256 � 256 � 124).

Physiological data

Cardiac pulse and respiratory effort data were monitored using a

pulse oximeter (InVivo) and a respiratory effort transducer (BIO-

PAC), respectively. The pulse oximeter was placed on the subject’s

right index finger. The respiratory effort belt was placed around the

subject’s abdomen. Physiological data were sampled at 40 samples

per second using a multi-channel data acquisition board (National

Instruments). In addition to the physiological data, scanner TTL

pulse data (10 ms duration, 5 volt pulse per slice acquisition) were

recorded at 1 kHz. The TTL pulse data were used to synchronize the

physiological data to the acquired images. Cardiac, respiratory and

TTL data were used to calculate the physiological noise regressors in

P. A detailed description is given in the appendix.

Data analysis

All images were co-registered using AFNI software (Cox,

1996). For the hippocampal data sets, the hi-resolution anatomical

scans were used to delineate regions of interest (ROI) encompass-

ing the hippocampus and the parahippocampal gyrus.

Probability values (P values), F-statistics (F), and multiple

correlation coefficients (R) were calculated on a per-voxel basis

using the different methods described in the theory section. For the

hippocampal data sets, only voxels within the anatomical ROI were

analyzed. Estimates q̂ of the perfusion time series were obtained

from the first echo of the ASL time series using a lowpass filtering

matrixG (see Eq. (3)), whereG is the matrix form of g[n] = [1 2 1]/2

(Liu et al., 2002). The first four images in each time series were not

included in the analysis. The design matrix X in Eq. (4) was

assumed to be a vector obtained from convolving the block

design stimulus pattern with a gamma density function of the

form h(t) = (H n!) –1((t –Dt)/H )n exp(–(t –Dt)/H ) for t 	 Dt and 0

otherwise, with H = 1.2, n = 3, and Dt = 1. A constant and a

linear trend term were included as terms in the nuisance matrix S.

For each subject and experimental run, the number of activated

voxels obtained with each method was calculated using either a

threshold on the multiple correlation coefficients (R > 0.54 and R >

0.35 for visual cortex and hippocampus, respectively) or on the P

values (P < 0.00001 and P < 0.02 for visual cortex and

hippocampus, respectively). These thresholds were chosen to yield

approximately the same number of activated voxels in the two brain

regions. The multiple correlation coefficient thresholds were

obtained from the P value thresholds using the number of degrees

of freedom for the uncorrected data. Differences betweenmethods in



Fig. 1. Comparisons of the average number of activated voxels obtained with the various methods using correlation coefficient thresholds of 0.54 and 0.35 for

the visual cortex and hippocampal region, respectively. The upper row (a–e) shows data from the visual cortex, while the bottom row (f– j) shows data from the

hippocampal region. The title of each plot indicates the methods that are compared (e.g. (a) compares Method 1 (y-axis) to Uncorrected (x-axis)). The P value

indicating the significance of the difference between methods as assessed with a Wilcoxon signed rank test is also shown in each title. Subject numbers are

shown for each data point. The dashed line indicates the line of unity.
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the average number of activated voxels were assessed with a

Wilcoxon signed rank test.

To compare the methods on a per subject basis, we defined a

functional region of interest (ROI) for each subject using either the

multiple correlation or P value thresholds described above. The

ROI consisted of the union of all voxels that passed the threshold

using either no correction or the application of method 1 or method
Fig. 2. Comparisons of the average number of activated voxels obtained with the

cortex and hippocampal region, respectively. The upper row (a–e) shows data

hippocampal region. The correction methods compared in each case (see text for d

using a Wilcoxon signed rank test are shown above each plot. Subject numbers a
2. Comparisons were performed with both paired and unpaired

two-tailed t-tests on either the multiple correlation coefficients or

the logarithms of the P values across all voxels within the

respective functional ROIs. The unpaired t-tests assess the

significance of differences in the sample means, which is related

to the difference in the number of activated voxels. The paired t-

tests assess whether per-voxel differences across the ROI are
various methods using P value thresholds of 0.0001 and 0.02 for the visual

from the visual cortex, while the bottom row (f– j) shows data from the

efinitions) and the statistical significance of the difference between methods

re shown for each data point. The dashes indicate the line of unity.
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significantly different than zero. As shown in the Results, per-

voxel differences can be significantly different than zero without a

significant difference in the sample means.

To assess the relative contributions of cardiac and respiratory

fluctuations, we divided the energy of either the cardiac or

respiratory model components by the sum of the energies of the

cardiac, respiratory, and stimulus-related model components. For

example, the fractional energy of the cardiac regressors is given by

||PTOT,CĉTOT,C ||
2/(||X̃ĥ||2 + ||PTOT,C ĉTOT,C ||

2 + ||PTOT,RĉTOT,R ||
2)

where the subscripts R and C denotes the respiratory and cardiac

regressors, respectively. For each subject, we used a paired t-test

(two-tailed) over all voxels in the functional ROI to compare the

fractional energies of the cardiac and respiratory regressors.
Results

As shown in Figs. 1 and 2, for both visual cortex and the

hippocampal region, the use of methods 1 and 2 resulted in a

significant (P < 0.04) improvement in the number of activated

voxels as compared to no correction. Examples of the improvement

obtained with Method 2 are shown in Figs. 3 and 4 for a
Fig. 3. Example single subject data from visual cortex. Statistical significance m

smoothing) showing voxels with significant activation both prior to panel (a) and a

CBF images. Uncorrected and corrected average CBF time courses correspond

respectively, with the cardiac and respiratory components shown in panels (d) and

the activated region in panel (f) is shown in panel (g).
representative subject from each study. For the hippocampal study,

the activation map was obtained using the multi-run model

presented in Eq. (10). Increases in the number of activated voxels

and the reduced noise in the time series after correction are evident

for both studies.

For method 3, a significant increase (P < 0.04) as compared to

no correction was observed in the number of activated voxels

based on a correlation threshold in hippocampus, but other

comparisons did not indicate significant differences (P > 0.05).

In addition, Method 2 was found to yield significantly more

activated voxels (P < 0.05) than Method 3 for the two brain

regions. Because of its lower performance, the performance of

Method 3 is not further addressed in this section.

In the visual cortex, Method 2 yielded significantly more (P <

0.04) voxels than Method 1 with a correlation coefficient

threshold, but no significant difference was found (P > 0.06) for

voxels with a P value threshold. The significance of the increase in

activated voxels with the P value threshold for Method 1 was

highly dependent on the threshold used for selecting activated

voxels. At higher thresholds (e.g. P < 0.001), the difference in the

visual cortex was not significant (P > 0.05). For the hippocampal

region, Method 2 yielded significantly more (P < 0.04) voxels than
aps (thresholded at P < 0.00001 with nearest neighbor clustering and no

fter correction using Method 2 (panel (f)). These maps are overlaid on mean

ing to the activated region in panel (a) are shown in panels (b) and (c),

(e), respectively. The average corrected CBF time course corresponding to



Fig. 4. Example single subject data from hippocampus data. Statistical significance maps (thresholded P < 0.04 with nearest neighbor clustering and no

smoothing) showing voxels with significant activation both prior to panel (a) and after correction using Method 2 (panel (f)). These maps are overlaid on high

resolution anatomical images. Uncorrected and corrected average CBF time courses corresponding to the activated region in panel (a) are shown in panels (b)

and (c), respectively, with the cardiac and respiratory components shown in panels (d) and (e), respectively. The average corrected CBF time course

corresponding to the activated region in panel (f) is shown in panel (g).
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Method 1 using either the correlation coefficient threshold or the P

value threshold. The improved performance of Method 2 in the

hippocampal region is due primarily to the inclusion of the cardiac

regressors. This is reflected in the observation (data not shown)

that Method 2a with additional cardiac regressors yielded

significantly more activated voxels than Method 1 (P < 0.04 for

correlation and P value thresholds), while Method 2a with

additional respiratory regressors did not yield significantly more
Table 2

Mean and standard deviation of multiple correlation coefficients for voxels withi

Multiple correlation coefficients

Uncorrected Method 1 Method

1 0.57 T 0.14 0.64 T 0.09 0.65 T 0

2 0.55 T 0.14 0.65 T 0.09 0.66 T 0

3 0.52 T 0.12 0.61 T 0.07 0.62 T 0

4 0.53 T 0.08 0.57 T 0.07 0.60 T 0

5 0.55 T 0.13 0.63 T 0.09 0.64 T 0

6 0.48 T 0.15 0.60 T 0.06 0.61 T 0

Statistical comparisons were performed with both two-tailed paired and unpaired t

the number of voxels times the number of experimental runs. The significance valu

the multiple correlation coefficients for Methods 1 and 2 were significantly highe
activated voxels (P > 0.2 and P > 0.8 for correlation and P value

thresholds, respectively).

The means and standard deviations of the multiple correlation

coefficients and logarithmic P values are summarized in Tables 2–

5. Based on paired comparisons, Methods 1 and 2 resulted in a

significant (P < 0.0001) improvement in statistical significance as

compared to no correction for all subjects and brain regions. With

unpaired comparisons, Methods 1 and 2 provided a significant
n functional ROI (union of voxels with R > 0.54) in visual cortex

Comparison of Methods 1 and 2 N

2 Paired Unpaired

.08 0.28 0.75 421

.09 1 � 10– 14 0.14 387

.07 1 � 10– 12 0.18 229

.06 4 � 10– 11 0.001 75

.09 2 � 10– 27 0.04 433

.05 2 � 10– 9 0.15 140

-tests across voxels within the ROI, where the number of samples N denotes

es of the comparisons between Methods 1 and 2 are shown. For all subjects

r than those for uncorrected data (P < 1 � 10– 11).
,



Table 3

Mean and standard deviation of multiple correlation coefficients for voxels within functional ROI (union of voxels with R > 0.35) in hippocampal region

Multiple correlation coefficients Comparison of Methods 1 and 2 N

Uncorrected Method 1 Method 2 Paired Unpaired

1 0.25 T 0.07 0.36 T 0.05 0.39 T 0.04 3 � 10– 8 1 � 10– 4 139

2 0.29 T 0.07 0.34 T 0.07 0.40 T 0.06 6 � 10– 16 2 � 10– 11 115

3 0.32 T 0.08 0.38 T 0.06 0.40 T 0.05 3 � 10– 19 3 � 10– 6 215

4 0.24 T 0.11 0.36 T 0.07 0.35 T 0.08 0.26 0.30 83

5 0.23 T 0.10 0.37 T 0.05 0.39 T 0.04 2 � 10– 6 0.002 101

6 0.29 T 0.05 0.34 T 0.05 0.39 T 0.03 6 � 10– 14 2 � 10– 9 54

7 0.28 T 0.10 0.32 T 0.10 0.37 T 0.11 4 � 10– 5 1 � 10– 5 182

Statistical comparisons were performed with both two-tailed paired and unpaired t-tests across voxels within the ROI, where the number of samples N denotes

the number of voxels times the number of experimental runs. The significance values of the comparisons between Methods 1 and 2 are shown. For all subjects,

the multiple correlation coefficients for Methods 1 and 2 were significantly higher than those for uncorrected data (P < 1 � 10– 9).
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improvement (P < 0.005) in all subjects, except for subject 4 in the

visual cortex study. As an example of the improvement obtained,

Figs. 5 and 6 present comparisons of the per voxel P values

obtained with Method 2 versus the P values obtained with no

correction, for each subject in the visual and hippocampal study,

respectively.

As shown in Table 2 for visual cortex, paired tests of the

correlation coefficients showed that Method 2 yielded significantly

higher correlation coefficients (P < 10�5) than Method 1 for 5 out

of 6 subjects. With unpaired tests, only 2 out of 6 subjects showed

a significant difference (P < 0.05), with Method 2 providing higher

correlation coefficients. In contrast, with the paired comparisons of

the logarithmic P values summarized in Table 4, Method 1

obtained significantly (P < 10�6) lower P values than Method 2 for

5 out of 6 subjects in the visual cortex study, while P values

obtained with Method 2 were significantly lower for the remaining

subject (P < 0.02). However, only subject 1 showed a significant

difference at P < 0.05 when using an unpaired comparison. This

observation is consistent with the observation noted above that the

difference in the number of activated voxels for the two methods in

visual cortex is just significant at the P < 0.0001 threshold, and is

not significant for higher thresholds.

As shown in Table 3 for the hippocampal study, both paired and

unpaired comparisons of the correlation coefficients showed

significant differences (P < 10�4 and P < 0.003 for paired and

unpaired, respectively) for 6 out of 7 subjects, with higher

correlation coefficients for Method 2. For the comparisons of P

values shown in Table 5, paired tests indicated that Method 2
Table 4

Means and standard deviations of the logarithms of P values for voxels within fu

Logarithmic P values

Uncorrected Method 1 Method

1 �6.63 T 3.33 �7.72 T 2.55 �7.24 T

2 �6.14 T 3.08 �8.07 T 2.75 �7.87 T

3 �5.22 T 2.26 �6.89 T 1.95 �6.63 T
4 �5.54 T 1.72 �6.02 T 1.77 �6.35 T

5 �6.43 T 3.05 �7.78 T 2.88 �7.61 T

6 �4.84 T 2.35 �6.35 T 1.34 �6.08 T

Statistical comparisons were performed with both two-tailed paired and unpaired t

the number of voxels times the number of experimental runs. The significance valu

both Methods 1 and 2 were significantly lower than for uncorrected data on the basis

all subjects except subject 4 for whom the unpaired comparison with Method 1 wa

significant at P = 0.02.
achieved significantly lower (P < 0.01) P values than Method 1 for

3 out of 7 subjects, with no significant difference in P values for

the remaining 4 subjects. With unpaired comparisons, 2 of the 7

subjects showed significant differences (P < 0.005).

The cardiac and respiratory fractional energies averaged across

all voxels in the functional ROI are listed in Table 6, along with

the results of paired t-tests. In the visual cortex, the fractional

energy of the respiratory component was significantly higher (P <

0.03) than the energy of the cardiac component for all subjects. In

the hippocampal region, the energy of the respiratory components

was higher (P < 0.03) in 5 out of 7 subjects, but significantly

lower (P < 0.005) in 2 out of 7 subjects. While there was no

significant difference (P > 0.15) between the visual cortex and

the hippocampal region in the mean fractional energies of the

respiratory component, the mean fractional energy of the cardiac

component was significantly higher (P < 0.001) in the

hippocampal region as compared to the visual cortex.

Maps of the cardiac and respiratory fractional energies for both

the visual cortex and hippocampus (one subject from each study)

are shown in Fig. 7. Consistent with previous studies examining

physiological noise in BOLD data (Dagli et al., 1999; Glover et al.,

2000), the cardiac components are primarily localized around sulci

and vessels (such as the superior sagittal sinus), whereas

respiratory components are more diffusely distributed across the

brain. Overall, the cardiac fluctuations are more pronounced in the

hippocampal data as compared to the visual data. The reduction in

cardiac fluctuations around the superior sagittal sinus in the visual

data most likely reflects the use of small diffusion gradients, which
nctional ROI (union of voxels with P < 0.00001) in visual cortex

Comparison of Methods 1 and 2 N

2 Paired Unpaired

2.38 1.4 � 10– 21 0.007 377

2.70 5.1 � 10– 9 0.347 343

1.84 1.2 � 10– 14 0.186 193

1.68 0.014 0.336 50

2.91 5.4 � 10– 7 0.457 353

1.29 4.9 � 10– 7 0.121 111

-tests across voxels within the ROI, where the number of samples N denotes

es of the comparisons between Methods 1 and 2 are shown. Log P values for

of paired comparisons (P < 10�4) and unpaired comparisons (P < 0.005) for

s not significant (P = 0.17) and the unpaired comparison with Method 2 was



Table 5

Means and standard deviations of the logarithms of P values for voxels within functional ROI (union of voxels with P < 0.02) in hippocampal region

Logarithmic P values Comparison of Methods 1 and 2 N

Uncorrected Method 1 Method 2 Paired Unpaired

1 �1.13 T 0.56 �1.91 T 0.39 �1.93 T 0.44 0.46 0.66 162

2 �1.45 T 0.56 �1.79 T 0.51 �2.03 T 0.55 2.1 � 10– 5 0.001 105

3 �1.65 T 0.63 �2.00 T 0.51 �2.06 T 0.52 0.006 0.21 231

4 �1.25 T 0.67 �1.78 T 0.55 �1.76 T 0.59 0.71 0.75 154

5 �1.23 T 0.67 �1.94 T 0.50 �1.97 T 0.41 0.48 0.67 129

6 �1.43 T 0.43 �1.81 T 0.44 �1.95 T 0.36 4.0 � 10– 5 0.005 121

7 �1.40 T 0.71 �1.66 T 0.66 �1.73 T 0.79 0.27 0.25 233

Statistical comparisons were performed with both two-tailed paired and unpaired t-tests across voxels within the ROI, where the number of samples N denotes

the number of voxels times the number of experimental runs. The significance values of the comparisons between Methods 1 and 2 are shown. Log P values for

both Methods 1 and 2 were significantly lower than for uncorrected data on the basis of paired comparisons (P < 10�5) and unpaired comparisons (P < 10�4)

for all subjects.
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were not applied in the hippocampal experiments. The large

cardiac fluctuations in the anterior portion of the hippocampal

slices are similar to those observed by (Dagli et al., 1999) and most

likely reflect the presence of arteries and large arterioles in this

region of the brain, which is close to the Circle of Willis.
Discussion

We have examined three extensions of a retrospective image

based correction method (RETROICOR) for the reduction of

physiological noise in ASL fMRI studies. The proposed methods

are derived from a general linear model of the estimated perfusion

time series. Method 1 assumes that physiological noise affects the

tag and control images equally, while Method 2 does not impose

this constraint. In contrast, Method 3 assumes that the dominant

effect of the physiological noise occurs through modulation of

cerebral blood flow as opposed to contamination of the measured

tag and control images.
Fig. 5. Comparison of voxel-wise P values prior to (x-axis) and after correction

statistical significance (two-tailed paired t-test) of the difference in P values is in
We found that Methods 1 and 2 provided significant improve-

ments in performance for both brain regions examined, as

compared to both Method 3 and no correction. The relatively

poor performance of Method 3 appears to suggest that the effect of

physiological noise on the acquisition of the tag and control images

is greater than the effect on perfusion. It is possible that the

performance of method 3 could be improved with the use of

measurements of end tidal carbon dioxide (ETCO2), since it has

been shown that fluctuations in arterial velocities and the BOLD

signal show a correlation with ETCO2 (Wise et al., 2004). For

example, a hybrid approach that utilizes Method 2 for the

respiratory and cardiac regressors and Method 3 for ETCO2

regressors may provide gains in performance.

Method 2 was significantly better than Method 1 for functional

studies of the hippocampal region. The difference in the methods

was not as pronounced in the visual cortex, where Method 2

performed better than Method 1 on the basis of correlation

coefficients but was not significantly different on the basis of P

values. Although the use of P values is preferred when a more
(y-axis) using Method 2 for visual cortex data in each of 6 subjects. The

dicated above each plot.



Fig. 6. Comparison of voxel-wise P values prior to (x-axis) and after correction (y-axis) using Method 2 for hippocampal data in each of 7 subjects. The

statistical significance (two-tailed paired t-test) of the difference in P values is indicated above each plot.
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rigorous metric of statistical significance is desired, we have

included correlation coefficients in our presentation to facilitate a

qualitative comparison with a number of previous investigations

that have used correlation coefficients to assess the impact of

physiological noise reduction in BOLD experiments (Hu et al.,

1995; Chuang and Chen, 2001; Pfeuffer et al., 2002b).

The quantitative comparison of the two methods is consistent

with the following qualitative conclusion that has emerged from

our hands-on experience with the data: Method 2 should be used

for hippocampal studies, while the difference between Methods 1

and 2 for the visual cortex is relatively small so that either method
Table 6

Fractional energies of the respiratory and cardiac components for (a) visual

cortex and (b) hippocampal region

Subject # Respiratory Cardiac

(a) Visual cortex

1 0.30 0.076a

2 0.30 0.085a

3 0.22 0.165a

4 0.20 0.132a

5 0.28 0.127a

6 0.40 0.115a

(b) Hippocampal region

1 0.41 0.33a

2 0.36 0.20a

3 0.18 0.32b

4 0.30 0.40b

5 0.47 0.26a

6 0.36 0.20a

7 0.41 0.25a

a Respiratory and cardiac fractional energies are significantly different

(P < 0.03) with larger mean respiratory fractional energy.
b Respiratory and cardiac fractional energies are significantly different

(P < 0.005) with larger mean cardiac fractional energy.
can be used with confidence. The differences in the performances

of the two methods may reflect the significant increase in the

fractional energy of cardiac fluctuations in the hippocampal region

as compared to the visual cortex. As mentioned in the Results

section, the increased cardiac fluctuations in the hippocampal

region most likely reflect the greater presence of large vessels in

this brain area. It has been shown that the amount of blood that is

tagged and delivered to the imaging region depends on the

temporal position of the tagging pulse relative to the cardiac cycle

(Wu et al., 2005). As a result, cardiac fluctuations are likely to

affect tag images differently than control images. Method 2 models

this effect by allowing for different regressor weights for the tag

and control images.

In presenting the results of the reduction of physiological noise

in ASL fMRI studies, there is an implicit assumption that the

lowering of P values with the application of the algorithm indicates

an improvement in statistical performance. In general, the removal

of deterministic physiological components should tend to make the

residuals more Gaussian, leading to a more accurate model and less

biased statistics. In some cases, however, it is possible that the

more accurate model may yield higher P values than a less

accurate model (e.g. with non-Gaussian residuals). While our

experimental results (e.g. Figs. 5 and 6) suggest that this is not a

prevalent effect, further studies using an analysis in which the

Gaussian assumption is relaxed (e.g. a Bayesian analysis with

sampling of the posterior distribution (Woolrich et al., 2004)) could

provide a more accurate understanding of the performance of the

proposed methods.

In this paper, we have focused on extensions of a retrospective

image-based noise reduction method (RETROICOR) that has been

previously applied to BOLD fMRI studies. The proposed methods

can be readily combined with navigator-based methods (Pfeuffer et

al., 2002b), and an investigation of the performance of the

combination of methods would be useful. Similarly, retrospective

k-space methods (Hu et al., 1995) are also likely to provide some



Fig. 7. Maps of fractional cardiac and respiratory energies in the visual cortex (a; subject 1) and the hippocampal region (b; Subject 1). Low-resolution

anatomical images are shown in the top row. The middle and bottom rows show cardiac and respiratory energy maps (scaled between 0 and 100%),

respectively.
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degree of noise reduction for ASL experiments. Both the

navigator-based and k-space methods would most likely be used

as pre-processing steps, since their integration into the framework

of a general linear model does not appear to be straightforward.

An alternative approach to reducing physiological noise in ASL

measurements is the use of background suppression methods that

attenuate the static tissue (Ye et al., 2000; Kemeny et al., 2005).

While these methods have been shown to reduce the standard

deviation of ASL images (Ye et al., 2000), one study has reported

that the gains achieved for functional ASL studies are slight but not

significant (St Lawrence et al., 2005). This is in contrast to the

significant gains presented here with image-based correction

methods. However, in a preliminary study focused on visual

cortex, we have found that background suppression offers gains

similar to those achieved with the methods presented here. In

addition, the combination of background suppression and image-

based correction methods provides significantly better performance

than either method alone. Further study into the optimal application

of background suppression and image-based correction methods is

therefore likely to lead to significant improvements in the

sensitivity of functional ASL experiments.

The noise correction methods examined in this paper have been

based on a general linear model (Eq. (4)) of the perfusion signal,

which is estimated using a filtered subtraction of the tag and

control images. The filtered subtraction approach is standard in the

literature and introduces relatively minimal bias for the block

designs that we have used in this paper (Aguirre et al., 2002; Wang

et al., 2003a; Liu and Wong, 2005). However, for event-related

designs, the filter subtraction approach leads to a significant

filtering of the estimated impulse response (Liu et al., 2002; Liu

and Wong, 2005) and is also less statistically efficient than

methods based on the unfiltered model in Eq. (2) (Hernandez-

Garcia et al., 2005). The extension of the methods presented here

to the unfiltered model should therefore prove to be useful for

event-related ASL experiments.

In conclusion, we have shown that the application of image-

based physiological noise reduction methods can significantly

improve the sensitivity of functional ASL experiments. This

improvement in sensitivity will be particularly important for

cognitive fMRI studies, where activations tend to be less robust

than those found in sensory studies and where the use of event-

related paradigms can result in reduced detection power.
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Appendix A

Each row of the matrix P representing physiological regressors

in Eq. (2) is defined as [cos(Cn) cos(2Cn) sin(Cn) sin(2Cn)
cos(Rn) cos(2Rn) sin(Rn) sin(2Rn)] where Cn = uc[n] is the
cardiac phase, Rn = ur[n] is the respiratory phase, and n

indexes the image data acquired at time t = nTR. The columns
of P thus form the terms of a 2nd order Fourier series
expansion in terms of cardiac phase (columns 1 through 4) and

a 2nd order Fourier series expansion in terms of respiratory
phase (columns 5 through 8).

For each image, cardiac phase is defined as uc n½ � ¼ 2p t � t1
t2 � t1

,

where t is the time at which the image is acquired, t1 is the time of

the cardiac peak immediately prior to t, and t2 is the time of the

cardiac peak immediately after t (Hu et al., 1995). Following

(Glover et al., 2000), respiratory phase is defined as

ur n½ � ¼ p

Xrnd 100 I
R t½ �
Rmax

Þð

b ¼ 1

H b½ �

X100
b ¼ 1

H b½ �

sgn dR=dtð Þ

where rnd denotes an integer rounding operation, R[t] is the

amplitude of the signal from the respiratory belt normalized from 0

to Rmax, where Rmax is the maximum of R[t], and H[b] denotes the

histogram of the number of occurrences of respiratory amplitude

values that occur at bin value b. Bin values span 0.01Rmax thru

Rmax with intervals of 0.01Rmax. The term sgn(dR/dt) is the sign of

dR/dt, with a value of 1 during inspiration and �1 during

exhalation. To calculate sgn(dR/dt), we used a sliding window

that spans two consecutive respiratory signal peaks. A value of �1
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is assigned to all data points preceding the minimum data point,

whereas a value of +1 is assigned to the rest of the points within

the window. This process is continued for each succeeding

window. When the sgn(dR/dt) value is positive (inhalation),

ur[n] spans 0 to k, whereas when sgn(dR/dt) is negative

(exhalation), ur[n] spans 0 to �k.
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