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Bayesian Inference of Hemodynamic Changes
in Functional Arterial Spin Labeling Data
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The study of brain function using MRI relies on acquisition
techniques that are sensitive to different aspects of the hemody-
namic response contiguous to areas of neuronal activity. For this
purpose different contrasts such as arterial spin labeling (ASL)
and blood oxygenation level dependent (BOLD) functional MRI
techniques have been developed to investigate cerebral blood
flow (CBF) and blood oxygenation, respectively. Analysis of
such data typically proceeds by separate, linear modeling of the
appropriate CBF or BOLD time courses. In this work an approach
is developed that provides simultaneous inference on hemo-
dynamic changes via a nonlinear physiological model of ASL
data acquired at multiple echo times. Importantly, this includes
a significant contribution by changes in the static magnetiza-
tion, M , to the ASL signal. Inference is carried out in a Bayesian
framework. This is able to extract, from dual-echo ASL data,
probabilistic estimates of percentage changes of CBF, R∗

2 , and
the static magnetization, M . This approach provides increased
sensitivity in inferring CBF changes and reduced contamination
in inferring BOLD changes when compared with general linear
model approaches on single-echo ASL data. We also consider
how the static magnetization, M , might be related to changes in
CBV by assuming the same mechanism for water exchange as
in vascular space occupancy. Magn Reson Med 56:891–906,
2006. © 2006 Wiley-Liss, Inc.
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Functional magnetic resonance imaging (FMRI) techniques
can be used for noninvasive spatial mapping of neural
activity in the healthy and pathological brain. Such tech-
niques are sensitive to the effect that the neural activity has
on hemodynamic changes in the vasculature adjacent to the
activity. Hence, subjects can be scanned while performing
cognitive tasks, spatially localizing areas of the brain in
which the task-induced neural activity causes measurable
changes in the hemodynamics.

The most popular of the FMRI techniques is blood oxy-
genation level dependent (BOLD) sensitive FMRI (BOLD-
FMRI) (1,2). This is predominantly sensitive to changes in
the oxygenation of the blood that occur in regions of the vas-
culature near neural activity. The hemodynamic changes
that result in the BOLD effect are due to a combination of
physiological parameters, for example, CMRO2 (cerebral
metabolic rate of oxygen [consumption]), CBF (cerebral
blood flow), and CBV (cerebral blood volume) (3,4). FMRI
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techniques such as arterial spin labeling (ASL) (5,6), and
more recently vascular space occupancy (VASO) (7), have
also been developed for providing windows on CBF and
CBV respectively, without the need for exogenous contrast
agents.

One of the main reasons why BOLD-FMRI is so widely
used is its high contrast-to-noise ratio (CNR) relative to
ASL-FMRI and VASO-FMRI (7,8). However, there are still
a number of reasons why it would be advantageous to con-
sider these other techniques as well. First, particularly at
lower field strengths (1.5–3 T), ASL-FMRI and VASO-FMRI
can potentially provide measurements of hemodynamic
changes more directly related to the capillary beds con-
tiguous to the sites of neuronal activity (7–9). Second, it
is difficult to assess the performance of models that relate
BOLD signal all the way back to a stimulation task. Tech-
niques such as ASL and VASO can be used for providing
valuable intermediate information (10). Third, ASL-FMRI
and VASO-FMRI individually provide direct, quantitative
measurements of physiologically meaningful parameters
(CBF and CBV, respectively). For example, it has been
well demonstrated that by using calibration via hyper-
capnia, BOLD-FMRI and ASL-FMRI can be combined to
estimate steady-state neural activity induced changes in
CMRO2 (11).

Most current acquisition techniques are aimed at giving
separate, pure information about CBF, CBV, or BOLD. For
example, measurements of ASL and BOLD can be made
by interleaving ASL and BOLD acquisition (11). Single-
shot multiecho data have also been used previously to
obtain increased BOLD sensitivity and quantitative T∗

2
mapping (12). This provides distinction of T∗

2 effects from
other factors, such as inflow and hardware instabilities.
Dual-echo ASL data have also been used to separate T∗

2
effects from CBF effects in ASL images (13–15).

However, analysis of such data typically proceeds by
separate, linear modeling of the appropriate CBF or BOLD
time courses (11,16,17). In this work, we instead propose
an approach that provides inference on the relevant func-
tional changes in the blood via a physiological model of
ASL data acquired at multiple echo times. This can be
achieved with a simple nonlinear model of the physi-
ology, which describes the observed signal in terms of
functional changes in CBF and T∗

2 , and static magnetiza-
tion, M (the static magnetization consists of blood and
tissue that remains in a voxel from the time of the blood
tagging to the image acquisition). This is then inferred
upon using a Bayesian framework. We demonstrate this
approach on single-shot dual-echo ASL data and on ASL
data interleaved at two different echo times.

We show that we can extract, from dual-echo ASL data,
probabilistic estimates of percentage changes of not only
CBF and T∗

2 , but also the static magnetization, M . We show
© 2006 Wiley-Liss, Inc. 891
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that extracting percentage CBF using this approach is
more sensitive than standard approaches of extracting it
from general linear models (GLM) of ASL data at a single
echo time (16,17). We also demonstrate the contribution
of the static compartment, M , contribution to the ASL
signal, which has not (to our knowledge) been previ-
ously reported. Taking the contribution of this component
into account provides reduced contamination in inferring
BOLD changes when compared with GLM approaches on
single-echo ASL data. The nonlinear ASL signal model
described in this paper incorporates these different hemo-
dynamic components, allowing them to be inferred from
dual-echo ASL data with more accuracy and sensitivity
than current GLM approaches on single-echo ASL data.
We also consider how the static magnetization, M , can be
related to changes in CBV assuming a similar physiologi-
cal mechanism to VASO. This method has the potential to
allow for a range of complementary, quantitative informa-
tion to be efficiently gathered from functional MRI brain
studies.

THEORY

ASL Model

The physiological model we will use is based in part on the
ASL signal processing model introduced by Liu et al. (18).
The ASL signal, pn, where n = 1 . . . N indexes the ASL scan
number in a series of N ASL scans, is assumed to exhibit a
simple exponential dependence on the echo time, TE, and
the transverse relaxation rate (R∗

2),

pn = Sne−TEr0(1+rn/100), [1]

where r0 is the baseline R∗
2, rn is the percentage change

in R∗
2, and Sn is the magnetization in a voxel. The magne-

tization in a voxel, Sn, is modeled as two compartments
consisting of the magnetization due to tagged (or untagged)
arterial blood that flows into the observed voxel, Sb

n, and of
the magnetization that remains static in the voxel, Ss

n,

Sn = Ss
n + Sb

n. [2]

Arterial Blood Flow Compartment

In the arterial blood flow compartment, the term Sb
n repre-

sents the magnetization that is delivered into the voxel in
the blood. Note that because we are looking for a full model
of the observed data, we are not just modeling magnetiza-
tion differences between tag and control. Instead, we need
to model the magnetization arriving into the voxel in the
blood under both the tag and the control conditions. This
requires us to take into account the T1 recovery of the mag-
netization throughout the sequence. In this work we use
a specific model of this magnetization recovery by assum-
ing that the ASL data is from a QUIPSS II sequence (9).
However, the model could be easily adapted for other
sequences.

Figure 1 shows the T1 recovery for the different types
of arterial blood, which we assume to have been delivered
to an imaged voxel in a QUIPSS II sequence. This includes
tagged and untagged blood and also saturated blood, which
has experienced the QUIPSS II saturation pulse applied to
the tagging region at time TI1.

FIG. 1. T1 recovery for the different types of arterial blood that we
assume to have been delivered to an imaged voxel in a QUIPSS II
sequence. This includes tagged and untagged blood and also satu-
rated blood, which has experienced the QUIPSS II saturation pulse
applied to the tagging region at time TI1. TI2 is the time between
the inversion and image acquisition, and TI1 is the time between the
inversion and saturation pulse in the tag region.

The QUIPSS II saturation pulse is designed to produce
a tagged bolus of sharply defined time width TI1, which
leaves the tagging region and is assumed to have entered the
imaging region before image acquisition (9). This assumes
that TI1 is less than the original bolus width generated by
the inversion in the tagging region.

In Buxton (19) and Wong (9) exchange between the static
compartment and the delivered blood, and clearance of this
delivered blood due to outflow, are modeled in the fac-
tor q. As discussed in Buxton (19) and Wong (9), at the
inversion times used in QUIPSS II these effects are con-
sidered small, resulting in a value for the factor q close to
unity. In this work we assume q = 1, i.e., that there is no
exchange between the static compartment and the deliv-
ered blood and no clearance of the delivered blood due to
outflow. We discuss this assumption under Model Validity
the Discussion.

Using these assumptions we can say that the blood
arriving at the imaging region at time t after the tag is

0 < t < δt : untagged blood

δt < t < δt + TI1 : tagged blood/untagged blood

δt + TI1 < t < TI2 : saturated blood, [3]

where δt, the transit delay, is the time between the applica-
tion of the tag and the first arrival of blood in the imaging
region. Of the tagged blood/untagged blood arriving in a
voxel during the period δt < t < δt + TI1, we assume that
under the ASL control condition all of it is untagged, and
under the tag condition α of it is tagged and 1 − α of it is
untagged (where α is the inversion efficiency of our tag-
ging). The total amount of arterial blood that has arrived in
a voxel at time t = TI2 since tagging will be CBF × TI2.

We can now combine this with the recovery curves for
tagged, untagged, and saturated blood in Fig. 1 to give the
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magnetization that has arrived in a voxel at time t = TI2

under the control condition as

ρb
0q0(1 + qn/100)

(
δt + TI1 + (TI2 − TI1 − δt)

× (1 − e−(TI2−TI1)/T1b )
)

[4]

and under the tag condition as

ρb
0q0(1 + qn/100)

(
δt + TI1(1 − 2αe−TI2/T1b )

+ (TI2 − TI1 − δt)(1 − e−(TI2−TI1)/T1b )
)
, [5]

where ρb
0 is the relaxed magnetization per unit volume of

arterial blood, q0 is the baseline CBF, qn is the percent-
age change in CBF, and T1b is the T1 of the arterial blood.
This gives the magnetization present in the arterial blood
compartment at time t = TI2 as approximately

Sb
n = ρb

0q0(1 + qn/100)TI1(Rρn + (1 − R)) + ρb
0q0(1 + qn/100)

× (
(TI2 − TI1 − δt)(1 − e−(TI2−TI1)/T1b ) + δt

)
, [6]

where R = αe−TI2/T1b . The alternating tag and control condi-
tions are represented by the term ρn, which is 1 for control
and −1 for tag. The first term in Eq. [6] is equivalent to that
found in Liu et al. (18). However, the second term extends
the model of Liu et al. (18) to handle saturated blood T1

recovery and transit time delays.

Static Compartment

This compartment models the static components. This is
defined as any magnetization that is in the voxel at the
time of the tagging pulse and is still within the voxel at the
time of image acquistion. At this stage we do not make any
further assumptions about the form of the magnetization.

Crucially, we are assuming that the static magnetization
per voxel varies with time:

Ss
n = M0(1 + Mn/100), [7]

where M0 is the baseline static compartment signal and Mn

is the percentage change in the static compartment signal.
Note that even though we assume the use of a presatura-
tion pulse in the image plane at time TI2 prior to image
acquisition, we do not explicitly model any longitudinal
relaxation. Instead, this will be absorbed into the M0 term.

Under Inferring CBV Changes we will consider what
might constitute the static compartment magnetization. In
particular, we will consider whether it is possible to sepa-
rate the contributions to the static compartment of tissue
and blood, including effects of longitudinal relaxation,
to relate Mn to changes in CBV in the same manner as
VASO (7).

Percentage R∗
2 , CBF and M Temporal Models

We now must specify what we assume about the time series
of the percentage change in R∗

2, CBF, and M in response

to known experimental stimuli in a functional experi-
ment. We take an approach commonly used in standard
BOLD-FMRI analysis by using basis functions to provide
flexibility in fitting the response shape within a simple
mathematical framework (20).

If we have j = 1 . . . J basis functions to model the
response, then for CBF we have

qn =
J∑

j=1

Qjxjn, [8]

where Qj is the CBF parameter for the jth basis function,
xj. The choice of basis set will be determined by the nature
and extent of the flexibility that we want to allow in the
response shapes. It might be a set of stimulus convolved
basis functions or a set of basis functions that span the space
of expected responses to an epoch of stimulation.

The same approach is taken to model the percentage
changes in R∗

2 and M , with parameters Qj replaced by Rj

and Mj , respectively.

ASL Data at Two Echo Times

Now that we have defined a physiological model of the ASL
signal, we can turn our attention to how we model ASL
data acquired at multiple echo times. In particular, we will
use dual-echo ASL data and ASL data interleaved at two
different echo times.

We will denote the perfusion ASL signal at the first echo
time as p1n and at the second echo time as p2n, giving two
versions of Eq. [1]:

p1n = Sne−TE1r0(1+rn/100)

p2n = Sne−TE2r0(1+rn/100). [9]

The measured time series of the ASL data, y1n and y2n, are
modeled independently as the sum of these observation/
forward models and additive noise terms. This gives

ycn = pcn + ecn, [10]

where c = 1 or c = 2 depending on which echo time the
data are from. The noise in gradient echo planar imaging
data, particularly from the context of BOLD-FMRI, is well
understood to contain large components of low-frequency
noise or temporal autocorrelation (21). To deal with this
we take a similar approach to that which is used in BOLD-
FMRI analysis, by removing the worst of the low-frequency
noise using high-pass filtering and modeling the remaining
noise with a Gaussian autoregressive (AR) model (21),

ecn = acecn−1 + εcn

εcn ∼ N (0, φ−1
c ), [11]

with AR parameter ac and with precision φc (precision
is 1/variance). Note that we assume a different AR and
noise variance parameter for the two different echo times.
This allows for the possibility that any noise in the system
occurring at the level of R∗

2 fluctuations will be manifested
differently at the two different echo times being used.
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Table 1
Free Physiological Parameters in the Model

Parameter Description

β q0ρb
0 , where q0 is baseline CBF and ρb

0 is the
magnetization per unit volume of arterial blood

Qj Percentage change in CBF for basis function j
r0 Baseline R∗

2
Rj Percentage change in R∗

2 basis function j
M0 Baseline M , where M is the static magnetization

per voxel
Mj Percentage change in M for basis function j
δt Transit time delay between tag region and image

region

The signal model parameters common to both echo times
are summarized in Table 1 and are

θ = {Qj , Rj , Mj , r0, β, M0, δt}, [12]

where β = q0ρ
b
0, and the echo time specific noise parame-

ters are

ϑc = {ac , φc} [13]

for c = 1 and c = 2. Other fixed parameters in the model
are given in Table 2.

Bayesian Inference

We have defined a model for predicting ASL data at two
different echo times. We now describe how we can use this
model to infer the changes in CBF, R∗

2, and M from acquired
data. Not only do we want to combine the information from
both echo times to estimate the physiological changes, but
also we want to be able to characterize our uncertainty in
those estimates. Through necessity, our model is nonlinear
and multivariate (due to having data at two different echo
times). While it may be possible to infer using nonlinear
multivariate frequentist statistics, we prefer in this work to
use the more amenable framework of Bayesian inference.

The Bayesian framework is the only systematic way
to express probabilistic belief in model parameter values
given a set of observed data. Bayesian inference has been
successfully used previously in MRI to deal with nonlin-
ear BOLD-FMRI models (22,23), and to do probabilistic
diffusion-weighted tractography (24).

The two rules at the heart of Bayesian learning tech-
niques are conceptually very simple. The first tells us how
(for a model M) we should use the data, Y, to update our
prior belief in the values of the parameters Θ, p(Θ|M) to a
posterior distribution of the parameter values p(Θ|Y, M).
This is known as Bayes’ rule:

p(Θ|Y, M) = p(Y|Θ, M)p(Θ|M)
p(Y|M)

. [14]

However, this joint posterior probability distribution func-
tion (PDF) on all parameters, Θ, is often not the distribution
that we are most interested in. We are often interested in the
posterior PDF on a single parameter or an interesting sub-
set of parameters. Obtaining these marginal distributions

involves performing integrals,

p(ΘI |Y, M) =
∫

Θ−I

p(Θ|Y, M)dΘ−I [15]

where ΘI are the parameters of interest and Θ−I are all other
parameters. This takes into account the effect our uncer-
tainty on these “nuisance” parameters has on the PDFs of
the parameters of interest.

Bayesian Inference on ASL Data at Two Echo Times

In this work our data, Y , are ASL data acquired at two dif-
ferent echo times, y1 and y2 (i.e., yc with c = 1 and c = 2).
The parameters Θ constitute the set of signal model param-
eters common to both echo times, θ (Eq. [12]) and the sets
of echo time specific noise parameters, ϑ1 and ϑ2 (Eq. [13]).
The joint posterior over all parameters in Eq. [14] can be
written as

p(θ, ϑ1, ϑ2|y1, y2) ∝ p(y1|θ, ϑ1)p(y2|θ, ϑ2)p(θ)p(ϑ1)p(ϑ2).

[16]

The terms p(yc|θ, ϑc), for c = 1 and c = 2 represent con-
ditionally independent likelihoods (the probability of the
data given the model parameters) for the two separate echo
times. These are given by Eqs. [10] and [11].

In using a Bayesian framework we are able (and indeed
have) to express our prior belief about the parameters in
the model. Here, we use simple Uniform priors, with hard
constraints on the range of allowed parameter values, but
which otherwise are noninformative. For example, to be
consistent with our assumption that all of the tagged bolus
of time width TI1 has entered the imaging region before
image acquisition, we assume that 0 < δt < TI2 − TI1.
See Appendix A for the specification of the priors in our
model.

We want to be able to infer the percentage changes in CBF,
M , and R∗

2 from the data. These percentage changes are rep-
resented by the parameters Qj , Rj , Mj . To obtain the PDFs
on these parameters of interest we must marginalise out all
of the other signal and noise parameters using Eq. [15].

For the nonlinear signal with additive noise models used
in this paper, we are able to analytically integrate (marginal-
ize) out the variance parameters, φc . See Appendix B for the
solution to these integrals. However, the integrals for the
remaining parameters are not analytic. Hence, for these we

Table 2
Fixed Model Parameters for the Two Different Sequences Used

Interleaved
Dual-echo two-echo

Parameter Description visual data motor data

TI1 Time between
inversion and tag
saturation pulse

0.6 s 0.7 s

TI2 Time between
inversion and
image acquisition

1.5 s 1.4 s

α Inversion efficiency 1.0 1.0
TE1 Shortest echo time 9.1 ms 23 ms
TE2 Longest echo time 30 ms 32 ms
T1b T1 of delivered

arterial blood
1.65 s 1.65 s
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use the numerical integration approach of Markov chain
Monte Carlo sampling. See Appendix C for how this is
implemented.

METHODS

Dual-Echo ASL with Visual Stimulation Experiment

The scans were acquired using a PICORE QUIPSS II pulse
sequence on a General Electric Excite 3-T scanner with an
eight-channel array coil. Three 8-mm slices were acquired
through the primary visual cortex with TI1 = 0.6 s, TI2 =
1.5 s, tag thickness = 10 cm, tag-imaging region gap = 1 cm,
FOV 24 cm, flip angle 90◦, data matrix size 64 × 64, and
bipolar flow crushing gradients (b = 2 s/mm2). We applied
presaturation pulses to the imaging region prior to tagging.
Two echos (9.1 and 30 ms) were acquired with spiral read-
out every TR = 2 s. The stimulus used was a flashing (8 Hz)
radial checker board; the first 40 s were rest followed by
alternating, 20 s on and 40 s off, repeated four times. We
scanned six subjects. Each subject did four runs within a
single session. Each run repeated the same paradigm.

ASL Interleaved at Two Echo Times with Graded
Motor Stimulation Experiment

The scans are acquired using Q2TIPS on a Siemens 3-T
scanner, with TI1 = 0.7 s, TI2 = 1.4 s, tag thickness =
10 cm, tag–imaging region gap = 1.5 cm, FOV 25.6 cm, flip
angle 90◦, data matrix size 64×64, with bipolar flow crush-
ing gradients. We applied the presaturation pulses to the
imaging region prior to the tagging. Two echos (23 and
32 ms) were acquired in an interleaved fashion. Our ability
to be able to make use of such data demonstrates the flexi-
bility of the modeling approach proposed. The TR between
each measurement is 2.25 s, and the sequence starts tag
TE1–tag TE2–control TE1–control TE2 and then repeats.
The effective TR between subtracted corresponding tag–
control pairs will be 4.5 s. The task is performed by bilateral
sequential finger apposition between the thumb and each
of the forefingers in the repeated pattern (1) index (2) mid-
dle (3) ring (4) little (5) ring (6) middle. Each subject was
trained to time the rate of tapping to a flashing cue. Graded
activation is achieved by varying the rate of individual fin-
ger tapping between approximately 1, 3, 4, and 5 Hz. The
experiment begins with 45 s rest followed by alternating
45 s on and 45 s off, repeated over four cycles. The differ-
ent tapping rates were all performed within a single run.
Five different subjects were scanned.

Note that equations we have derived have been for a
QUIPSS II sequence and not for Q2TIPS. In QUIPSS II the
entire tag region is saturated at time TI1, whereas in Q2TIPS
the leading edge of the tag region is repeatedly saturated
from time TI1 to time TI3 (the sequence used has TI3 = 1.2 s)
after the tag is applied. We can modify the recovery curve
for saturated delivered blood when using Q2TIPS to take
this difference into account. See Appendix D for details.

Data Processing

The ASL time series have the first four scans removed
and then are motion corrected and high-pass filtered using
FEAT (25) using a high-pass cut-off of 100 TRs. We then

calculated regions of interest (ROIs), which represent spa-
tial areas that have changes relating to brain activation
in response to the stimulus. This is achieved by finding
areas of strong activation in the ASL data by using a simple
pairwise subtraction analysis as follows.

Pairwise subtracted ASL time series are calculated from
the data acquired at the shortest echo time and analyzed by
fitting a GLM to each voxel’s time series using FEAT (25).
The regressors in the GLM are formed by convolving
the stimulus time course with a simple canonical HRF
(Gaussian distribution with mean of 5 s and standard devi-
ation of 2.5 s). To obtain ROIs we threshold the resulting t
statistic map at t = 3 for the visual datasets and at t = 2.3
for the motor datasets. We then calculate the mean time
series over the voxels within the ROIs to give the ASL time
series, y1 and y2. This was done separately for all subjects
and runs. Note that a single ROI was determined for all
tapping rates in the motor datasets by thresholding on the
t statistic map for the fastest tapping rate.

ROI Analysis

For the ROI analysis using Bayesian inference on our pro-
posed nonlinear model, we used a Gaussian basis set to
model the percentage R∗

2, CBF, and M temporal changes.
This basis set can be seen in Fig. 4a. The basis set con-
tains six basis functions, shifted by different amounts to
span the full period between epochs of stimulation. The
Gaussian smoothed impulse responses repeat at the same
point within each repeated epoch of stimulation, so that
they produce time-locked averages of the response across
epochs. A standard deviation of 8 s was used for the
Gaussian smoothness.

Using a Gaussian basis set incorporates the assumption
that the response shapes will be temporally smooth. The
actual amount of smoothness imposed will be determined
by the number of basis functions and the standard devia-
tion of the Gaussians. These were chosen by qualitatively
matching the available CNR to the smoothness imposed.

In the case of the ROI analysis on individual datasets, we
found that six basis functions with a standard deviation of
8 s worked well. However, a less smooth basis set was used
when the aim was to obtain the average response shapes
across all subjects and runs. We can afford less smoothness
because we have more data, and therefore a higher CNR. In
that case, the basis set used was a Gaussian basis with 15
basis functions and a standard deviation of 2 s. Ideally, the
amount of smoothness would be determined from the data
itself. This is an area for future work.

Voxelwise Analysis

As well as an ROI analysis, we also perform a voxelwise
analysis. However, we do not use a basis set as flexible as
the Gaussian basis sets from the ROI analysis, as there will
be a much lower CNR when working with voxelwise data.
Instead we reconstruct response shapes for the percentage
R∗

2 and CBF changes from an ROI analysis averaged across
all subjects and runs using the GLM approach (see next
section). These averaged response shapes are shown for the
visual dataset in Fig. 5b. The M response shape is taken to
be the same as CBF.
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Comparison with GLM Approach

We also want to compute percentage BOLD and CBF
changes using standard linear methods so that we can
compare the values we obtain with our Bayesian analysis.
Typically, these would be obtained via some form of inter-
polation and subtraction/addition of the ASL data, before
fitting a GLM (16,18). However, Hernandez et al. (17) have
recently proposed a method that fits a GLM directly to the
ASL data. This has the advantage of using all of the avail-
able data, but has the disadvantage of requiring the sort of
temporal autocorrelation correction needed in BOLD-FMRI
analysis (21). This is the approach we take here.

As with the Bayesian analysis we perform both ROI
and voxelwise GLM analyses. The GLM regressors used
in the ROI analysis were derived from the same Gaussian
basis set used in our Bayesian analysis. Then, as with the
Bayesian analysis, we reconstruct response shapes for the
BOLD and CBF response shapes from the ROI GLM anal-
ysis averaged across all subjects and runs. These averaged
response shapes are shown for the visual dataset in Fig. 5b.
The resulting regressors used in the voxelwise GLM in the
approach of Hernandez et al. (17) are shown in Fig. 2. Note
that both the GLM and the Bayesian voxelwise analyses use
these same response shapes reconstructed from the GLM
ROI analysis. This ensures that any advantage is with the
GLM approach when we make comparisons between the
GLM approach and our nonlinear Bayesian method using
the voxelwise analyses.

We perform temporal autocorrelation correction by using
prewhitening using an autoregressive model of order 1 (21).
Note that this is the same noise model as we use in the
nonlinear Bayesian analysis. This approach is used on both
the ROI and the voxelwise data using the same basis sets

as the nonlinear Bayesian approach, so that a comparison
can be made on the computed percentage BOLD and CBF
changes. The GLM analysis was carried out on ASL data
at the longest echo time to get percentage BOLD estimates
and on ASL data at the shortest echo time to get percentage
CBF estimates.

Frequentist t statistics generated from the GLM analysis
will relate to probabilities of acquiring the data under the
null hypothesis. In contrast, probabilities generated from
the Bayesian inference on the nonlinear model will corre-
spond to the belief that we have in a parameter having a
particular range of values, given the data. To allow us to
compare the statistics from these two different approaches
we convert the GLM t statistics into z statistics via a
standard probability transform and the Bayesian inference
probability density functions into pseudo-z statistics by
a probability transform on the probability P(x > 0) from
the marginal posterior PDF (where, for example, x is per-
centage change in CBF). For models for which Bayesian
inference is analytic and frequentist null hypothesis test-
ing is possible (e.g., the general linear model with Gaussian
noise), z statistics and pseudo-z statistics calculated in this
way are equivalent (26).

Inferring CBV Changes

In this work we are proposing that we are able to infer
percentage changes in R∗

2, CBF, and the static magnetiza-
tion, M , from dual-echo ASL data. CBF is being directly
inferred, and R∗

2 relates to blood oxygenation (and blood
volume changes) via the BOLD contrast. We now con-
sider what could be causing the changes in the static
magnetization, M .

FIG. 2. Regressors used for the voxel-
wise GLM analysis of the undifferenced ASL
data as proposed by Hernandez et al. (17).
The response shapes used to obtain the
BOLD signal and ASL signal regressors
were obtained from a ROI GLM analysis
using a Gaussian basis set averaged across
all subjects and runs.
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FIG. 3. Plot showing lines of constant percentage error induced in
percentage CBV change, i.e., 100× (vnest −vn)/vn , by assuming that
the static magnetization, M , corresponds to a pure tissue magneti-
zation Mtissue . This is calculated using a static compartment model
simulation for a range of baseline CBV and baseline CBF values, with
parameter values given in Table 3. The cross indicates typical values
for baseline CBV and CBF of 5% and 0.01 mL/mL/s, respectively, at
which the error is −7.6%

We have defined the contents of the static magnetization
as any magnetization that is in the voxel at the time of the
tagging pulse and is still within the voxel at the time of
image acquistion. We now assume that this includes both
static tissue and “static” blood. Note that this does not mean
that the blood in question is actually stationary, but that
it has not had time to flow out of the voxel between the
time of the tagging pulse and the time of image acquistion.
For a typical CBF of 0.01 mL/mL/s and baseline CBV of
5%, the mean transit time through the vascular bed of a
voxel is 5 s (27). When compared with a time between the
tagging pulse and the time of image acquistion of TI2 =
1.5 s, we would not expect the amount of static blood to be
negligible. With this in mind we now consider whether it
is possible to see how changes in Mn relate to changes in
CBV by assuming the same mechanism as in VASO (7).

In VASO (7), the magnetization of the static tissue, Mtissue,
is measured by approximately nulling blood by using an
appropriately tuned inversion recovery. Changes in Mtissue

can then be related to changes in CBV if a baseline CBV
is assumed. An important assumption is that the change
in static tissue volume is associated with the exchange of
water from the static tissue into the blood. Subsequently,
a reduction in static tissue magnetization, Mtissue, corre-
sponds to an equivalent percentage reduction in static
tissue volume and an increase in blood volume. This can
be used to convert a percentage change in the tissue mag-
netisation, Mtissuen , into a percentage change in CBV, vn, by
assuming a baseline CBV, v0:

vn = Mtissuen (1 − 1/v0). [17]

In this work, we cannot automatically assume that
the changes in the static components magnetization, Mn,
inferred in this work corresponds to Mtissuen in VASO.
This is because the static magnetization compartment will
include contributions from both static tissue and static

blood, since we have not nulled the blood signal. To inves-
tigate the error in vn when we assume Mn = Mtissuen , we use
a model of the blood and tissue components of the static
magnetization. This is described in Appendix D. Using this
model, specifically via Eq. [33], we can calculate Mn for a
given vn. We can then use this value of Mn in Eq. [17] to cal-
culate an estimate of the percentage CBV, vnest , if we assume
Mn = Mtissuen :

vnest = Mn(1 − 1/v0). [18]

We can then calculate the error between vnest and the
known vn.

Figure 3 shows the errors induced in vn by assuming
Mn = Mtissuen for a range of baseline CBF, q0, and base-
line CBV, v0, values. Table 3 shows the assumed values for
the parameters used in Eqs. [33] and [18] to calculate these
errors. It can be seen that for typical values of baseline CBF,
q0 = 0.01 mL/mL/s, and CBV, v0 = 0.05, the error in vn

when assuming Mn = Mtissuen is only −7.6%.
The reason that this error is small is that Mbloodn ≈ 0,

and therefore Mn ≈ Mtissuen . This is because there are two
effects that produce changes in the magnetization in the
static blood compartment, and these effects approximately
cancel each other out. The first of these effects is an increase
in magnetization due to water exchange from the static tis-
sue (as assumed in VASO). The second is a decrease due
to increased blood flow causing less blood to remain in the
voxel between the time of the tagging pulse and the time
of image acquistion and therefore, by definition, less static
blood (recall that static blood is defined as blood that has
not had time to flow out of the voxel between the time of
the tagging pulse and the time of image acquistion).

However, Fig. 3 also illustrates that the error in vn

by assuming Mn = Mtissuen is sensitive to changes in
baseline CBF and baseline CBV. For example, at q0 =
0.015 mL/mL/s and CBV v0 = 0.03 the error has increased
to greater than 60%. Furthermore, the error in vn by assum-
ing Mn = Mtissuen is also sensitive to changes in percentage
CBF.

In short, it is not in general possible to infer percentage
CBV from percentage M changes, since the percentage M
changes also depend upon other physiological parameters
that are unknown (e.g., baseline CBV, baseline CBF, and
percentage CBF changes).

Table 3
Parameters Used in the Static Compartment Model Simulation

Parameter Description Value

v0 Baseline CBV 0.03–0.07
q0 Baseline CBF 0.005–0.015 mL/mL/s
vn Percentage change in CBV 32%
qn Percentage change in CBF 100%
rt Proton density of gray matter

tissue
0.82

rb Proton density of blood 0.75
T1t T1 of gray matter tissue 1.3 s
T1b T1 of blood 1.65 s
TI2 Time from tag (and image

region saturation) to
acquisition

1.5 s
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Grubb Relationship

In the steady state it has been previously observed that
CBV is highly correlated with CBF (28,29). The commonly
assumed nonlinear relationship is given by

1 + vn/100 = (1 + qn/100)α, [19]

where vn is the percentage change in CBV, qn is the per-
centage change in CBF, and α is the Grubb exponent and
was measured as being α ≈ 0.4 by Grubb et al. (28).

Combining Eqs. [18] and [19] gives

α = log(1 + Mn(1 − 1/v0)/100)
log(1 + qn/100)

. [20]

Note from the last section that the use of this equation is
only valid if we make some strong assumptions about phys-
iological values. However, if we do make those assump-
tions and we use our inferred percentage changes of static
magnetization, Mn, and of CBF, qn, from the visual and
motor datasets in this equation, then we can test whether
the estimated Grubb exponents are consistent with those
in the literature (28).

RESULTS

ROI Analysis

Figure 5a shows typical model fits to the data from the ROI
analysis on an example visual dataset. Also shown are the
separate contributions to the fit from the static compart-
ment and delivered blood compartments. Note that these
have had their means shifted for ease of display, but are
otherwise unscaled, so that their contribution to the varia-
tion in the signal can be assessed. Crucially, the good fits in
Fig. 5a are achieved simultaneously on the different echo
time data using a simple physiological model with only

free parameters that are common to both echo times. These
free parameters are specified in Table 1.

At the shorter echo time the delivered blood compart-
ment contributes most to the signal. However, there is a
clear reduction in the signal in the static compartment dur-
ing periods of activity. In the longer echo time data both
compartments contribute considerably to the signal, and
both are now clearly being heavily affected by R∗

2 effects.
Figure 4b shows the inferred PDF of the baseline R∗

2. This
has mean baseline R∗

2 of 25 s−1, corresponding to a baseline
T∗

2 of 40 ms. The Bayesian inference performed produces
PDFs for all of the parameters in our model, and it is
the means and variances of these distributions that we
use to give the mean fits and to perform inference on the
parameters.

Figure 4b also shows the inferred PDF for the transit time
delay, δt. There is a nonzero probability across all of the
allowed range. In general the PDFs for δt from the ROIs,
and also from the voxelwise analyses, were approximately
uniform, indicating that there is little or no information
available in the data to inform us as to what δt should
be. This is because there is no information available to
infer the transit time delay from a single inversion time.
However, this is not a concern, because this uncertainty in
δt is taken into account in the Bayesian framework when
we look to infer on the other parameters of interest in our
model.

Figure 5b shows the reconstructed average response
shapes for the percentage R∗

2, CBF, and M temporal changes
from the the ROI analysis averaged across all subjects and
runs (six subjects, four runs each). Note that the responses
for R∗

2 and M have had their signs reversed. This is because
neural activity should produce positive changes in CBF,
but negative changes in R∗

2 and M . The shaded regions
show the across subject (n = 6 subjects) standard errors
(std/sqrt(n)) in the inferred shape. The R∗

2 response shows

FIG. 4. (a) Gaussian basis set used to
model the percentage R∗

2 , CBF, and M tem-
poral changes in the ROI analysis of the
visual dataset. The six different basis func-
tions in the basis set are show on top of each
other. The areas of gray correspond to the
stimulus being applied. (b) The inferred prob-
ability density functions (PDF ) of the base-
line R∗

2 and the transit delay δt . The Bayesian
inference performed produces similar PDF s
for all of the parameters in our model and
can be used to perform inference on the
parameters.
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FIG. 5. (a) Typical model fits (blue) to the data
(black) at the different echo times from the ROI
analysis on an example visual dataset. Also shown
are the separate contributions to the fit from the
static compartment (green) and the delivered blood
(red) compartment (note that both also include R∗

2
weighting). These have had their means shifted for
ease of display, but are unscaled. At the shorter
echo time there is a clear reduction in the sig-
nal in the static compartment during periods of
activity due to the effect of reduced static tis-
sue magnetization. (b) Reconstructed response
shapes for the percentage R∗

2 , CBF, and M tem-
poral changes from the Gaussian basis set fits from
the ROI analysis averaged across all subjects and
runs for the visual datasets (six subjects, four runs
each). The responses have been normalized and
the responses for R∗

2 and M have had their signs
reversed. The shaded regions show the across sub-
ject (n = 6 subjects) standard errors (std/sqrt(n)) in
the inferred shape.

the least variability and suggests the presence of a poststim-
ulus undershoot. Figure 5b also shows the average response
shapes for the percentage R∗

2 and CBF changes from the
GLM analysis for comparison. The responses are qualita-
tively quite similar, although there appears to be a bigger
undershoot for the BOLD/R∗

2 response shape in the GLM
approach compared to the nonlinear Bayes approach.

Figure 6 shows the comparison of the inferred percent-
age changes in R∗

2, CBF, and M for the four different graded
stimulation strengths in the motor dataset. The inferred
percentage changes exhibit a linear trend as the motor stim-
ulation strength increases. Also shown are the inferred
mean percentage changes in R∗

2, CBF, and M for each subject
from the visual dataset.

FIG. 6. Comparison of the inferred percentage changes in R∗
2 , CBF, and M from the ROI analysis. For each of the five subjects in the motor

experiment, the inferred values at the four different motor stimulation strengths are joined by a line in the order of stimulation strength. The
percentage changes from the visual dataset ROIs (for which there is a single stimulation strength) are shown as a black cross at each subject’s
mean. The within-subject, across-run standard deviation is represented by the length of the arms on the crosses (there were four runs per
subject).
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Voxelwise Analysis

Figure 7 shows the spatial maps of changes in R∗
2, CBF, and

M for both example visual and motor datasets. This shows
z statistic maps corresponding to the different percentage
changes, thresholded at z = 3 (P < 0.005) alongside the
inferred mean percentage changes. All three of R∗

2, CBF, and
M show activation within the primary visual cortex (V1)
for the visual dataset and within the left and right motor
cortex and supplementary motor area (SMA) for the motor
datset. The amount of activity inferred is greatest in R∗

2,
followed by M and CBF. Figure 8 shows spatial maps of
the inferred mean baseline values relating to R∗

2, CBF, and
M . The baseline CBF map shows increased CBF in areas of
gray matter as would be expected. The baseline M and R∗

2
maps are comparatively homogeneous.

In the voxelwise analysis we are assuming a fixed
response shape determined from the GLM ROI analysis.
However, it is possible that the response shape could vary
spatially across the brain, and hence assuming a fixed
response shape could result in suboptimal fits. This could
be allowed for in the proposed framework by using a basis

set of the form commonly used in voxelwise BOLD-FMRI
GLM analyses, which includes a canonical HRF, a temporal
derivative, and a dispersion derivative (30).

Comparison with GLM Approach

Figures 9 and 10 show comparisons between the GLM anal-
ysis and the Bayesian inference on the nonlinear model.
Figure 9 shows the z statistic maps corresponding to per-
centage changes in CBF thresholded at z = 3 (P < 0.005)
for these two techniques for a sample visual dataset. The
Bayesian inference approach shows a wider extent of
activation in areas of plausible activation.

Figure 10a shows a scatter plot of the unthresholded
percentage changes in CBF z statistics and thresholded per-
centage changes in CBF, comparing the nonlinear Bayesian
approach with the GLM approach. The GLM analysis was
carried out on ASL data at the shortest echo time. Percent-
age changes in CBF are similar, but the Bayesian approach
shows increased z statistics. These results are consistent
with the Bayesian approach being more sensitive than the

FIG. 7. Spatial maps of changes in R∗
2 ,

CBF, and M for sample datasets. This
shows z statistic maps corresponding to
the different percentage changes, thresh-
olded at z = 3 (P < 0.005) along-
side the inferred mean percentage changes.
(a) Sample visual dataset and (b) Sample
motor dataset. The green arrows on the
visual dataset spatial maps indicate the loca-
tion of a focus of the strongest activation in
R∗

2 . There is no similar focus of activation in
the same location in the spatial maps of CBF
and M . This may be due to this area con-
taining the large draining vein of the sagittal
sinus, to which R∗

2 is sensitive and CBF and
M are not.
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FIG. 8. Spatial maps of inferred mean
baselines relating to R∗

2 , CBF, and M for
(above) sample visual dataset and (below)
sample motor dataset. Note that r0 is in units
of s−1, whereas M0 and ρb

0q0 are unitless.

GLM approach for inferring percentage changes in CBF.
This is due to the Bayesian inference using all of the
available data at both echo times.

Figure 10b shows a scatter plot of the unthresholded per-
cent changes in BOLD z statistics and thresholded percent-
age changes in BOLD, comparing the nonlinear Bayesian
approach with the GLM approach. The GLM analysis was
carried out on ASL data at the longest echo time. Per-
centage changes in BOLD are obtained from the Bayesian
approach by using the estimates of baseline and percentage
changes in R∗

2 and assuming the longest echo time. Percent-
age changes in BOLD tend to be higher in the Bayesian
approach. This is possibly due to the unmodeled static
magnetization changes reducing the percentage change in
BOLD in the GLM approach.

Noise Parameters

Figure 11 shows the distributions of the AR parameter, ac ,
for the different echo times from the ROI analyzes across all
runs/subjects from the different datasets. Recall that we are
assuming a different AR and noise precision parameter for

the two different echo times, as this allows for the possibil-
ity that any noise in the system occurring at the level of R∗

2
fluctuations will be affected differently at the two different
echo times being used. The AR parameters in the visual
dataset at the shortest echo time (mean AR(1) of 0.23 at
9 ms) are significantly lower than those at the longest echo
time (mean AR(1) of 0.55 at 30 ms) (one-tailed paired t test:
P < 1e − 8).

Although the motor and visual datasets were acquired
on different systems, they were both 3-T scanners, and
so we might expect the AR coefficients at the 30- and
32-ms echo times to be similar. However, Fig. 11 sug-
gests that this is not the case, with the motor dataset
showing much lower autocorrelation. This is because the
effective TR between observations at the same echo time
in the dual-echo visual data is approximately half that
of the interleaved motor data. We would expect the AR(1)
coefficient at half the temporal resolution to be a2. Our
inferred autoregressive parameters are consistent with this,
with the mean AR(1) coefficient in the visual dataset
at approximately 0.5 and that in the motor dataset at
approximately 0.25.

FIG. 9. Comparisons of the nonlinear Bayesian
approach with the GLM approach for a voxelwise
analysis on an example visual dataset. z statis-
tic maps corresponding to percentage changes in
CBF, thresholded at z = 3 (P < 0.005) for the GLM
approach and the Bayesian inference on the non-
linear model approach proposed in this paper, for
a sample visual dataset. The Bayesian inference
approach shows a wider extent of activation in areas
of plausible activation.
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FIG. 10. Comparisons of the nonlinear
Bayesian approach with the GLM approach
for a voxelwise analysis on a sample visual
dataset. (a) Scatter plot of the unthresh-
olded percentage changes in CBF z statis-
tics and thresholded percentage changes
in CBF. Shows increased z statistics for
the Bayesian approach. (b) Scatter plot of
the unthresholded percentage changes in
BOLD z statistics and thresholded percent-
age changes in BOLD. Shows increased per-
centage BOLD for the Bayesian approach.

Inferring CBV Changes

Figure 6 shows that we get percentage changes for M from
the ROI analyzes in the range −0.5% to −2.5% (−0.005 <

Mn < −0.025). Using Eq. [18] with a baseline CBV of
5% (v0 = 0.05), this corresponds to percentage changes
in CBV from 10 to 48%. We can also use our inferred
percentage changes of M and CBF in Eq. [20] to calcu-
late Grubb exponents for assumed baseline CBV values.
Figure 12 shows estimates of the Grubb exponent when
baseline CBV is fixed to 0.05, for the ROI analyzes across
subjects for the visual and motor datasets. The estimated
Grubb exponents are consistent with the predicted val-
ues of 0.4 from the literature (28). However, note that the
inferring CBV and Grubb exponents using the percentage
changes in M is based on some strong assumptions about
other physiological values (see Inferring CBV Changes).

DISCUSSION

In this work we have proposed a model-based method
for extracting information about percentage changes in R∗

2,
CBF, and static magnetization, M , from dual-echo ASL data.
Being able to simultaneously acquire different quantitative
measures may be of importance in studies where it is dif-
ficult to reliably reproduce conditions between runs, e.g.,
gas challenges and drug studies. The explicit modeling of
these different contributions to the measured signal pro-
vides this complementary information. At the same time,
we have shown that this increases sensitivity in inferring
CBF changes and reduces contamination in inferring BOLD
changes, when compared with linear modeling approaches
on single-echo ASL data.

CBF is typically inferred from single-echo ASL data by
obtaining a perfusion-weighted time series that consists of

FIG. 11. Distributions of the autoregressive
(AR) parameters at the different echo times.
The AR parameters in the visual dataset at
the shortest echo time are significantly lower
than those at the longest echo time.
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FIG. 12. Distribution of the Grubb exponent when baseline CBV is
fixed to 0.05 from the ROI analyzes across subjects for the visual and
motor datasets. Note that the error bars correspond to the standard
deviation across subjects.

differencing the ASL tag/control pairs (16,18). Changes in
BOLD weighting that occur faster than the time between
tag and control cause high-frequency contamination of
this perfusion-weighted time series. In single-event FMRI
experiments the percentage CBF signal will also have signal
at high frequencies, and so this contamination is a problem.
In this work this problem is avoided because we explic-
itly model and infer the BOLD changes (and indeed the
M changes) alongside the CBF changes, by using all of the
information available in dual-echo ASL data.

Static Compartment Contribution to the ASL Signal

The contribution of the static compartment, M , to the
ASL signal demonstrated in this work has not (to our
knowledge) been previously reported. As demonstrated
in Fig. 10b, this component causes fractional changes in
BOLD to be underestimated in a standard GLM approach
on single-echo ASL data. As illustrated in Fig. 10b, in the
GLM approach BOLD changes can be underestimated by
around 25%. This has important implications for extract-
ing BOLD changes from ASL data using either averaged
tag–control approaches (16), or the more sophisticated
available techniques for analyzing single-echo ASL using a
linear model (17).

The high z statistics in Figs. 7 and 10 demonstrate that
we are able to separate out and infer R∗

2, qn, and Mn changes
from dual-echo ASL data. The reason that we can separate
the R∗

2 (BOLD) changes from the M (static compartment)
changes is that the R∗

2 changes are modulated by the two
different echo times, whereas the M changes are not. The
reason that we can separate the CBF changes from the M
changes is that the CBF changes are tag–control modulated,
whereas the M changes are not. The nonlinear ASL signal
model described in this paper incorporates the contribu-
tions to the ASL signal of these different hemodynamic
changes, thus allowing them to be inferred from dual-echo
ASL data with more accuracy and sensitivity than cur-
rent GLM approaches on single-echo data. In this work,

this inference happens to be achieved with Bayesian infer-
ence. However, it is worth noting that it possible that
non-Bayesian approaches such as multivariate frequentist
statistics could be used to achieve the same results. How-
ever, in our experience the Bayesian framework is a more
amenable mathematical framework for such nonlinear,
multivariate applications.

Sensitivity in Inferring CBF

Figure 10a shows results that are consistent with the pro-
posed method being more sensitive than a GLM approach
for inferring percentage changes in CBF. This is despite
the fact that we are using one of the more sophisticated
available techniques for analyzing ASL using a linear
model (17). Figure 5a shows that there is considerable tag–
control modulated CBF component in the delivered blood
at the longer echo times used as well. The full physiological
model allows us to utilize all of the available undiffer-
enced data at both echo times. This provides us with extra
information to give us more sensitive estimation of CBF.
We note that it is possible that non-Bayesian approaches
such as multivariate linear frequentist statistics could be
used to combine the data from both echo times to achieve
the same sensitivity gains in inferring CBF. However, these
techniques would need to be nonlinear if R∗

2 and M changes
were to be inferred as well.

Model Validity

The results found in this work appear to be biophysi-
cally plausible (e.g., Figs. 5, 6, 7, and 12), and we obtain
good model fits to data acquired at both echo times (e.g.,
Fig. 5a). Plausible physiological results were obtained
across runs/subjects, between the motor and visual region,
and between two different sequences (either with dual-
echoes from a single shot or two different echo times
interleaved). This is encouraging validation of the model
assumptions within the context of inferring the relevant
physiological changes from this kind of data.

The model is intended to be as simple as possible, while
still describing the primary components of variation in the
measured signal in ASL data.

We assume no exchange between the static tissue com-
partment and the delivered blood, and we assume no
clearance of this delivered blood due to outflow. These two
effects result in the factor q in Buxton (19) and Wong (9),
and are considered small, resulting in a value for the factor
q close to unity. If the time of exchange is approximately
1 s after the delivered blood has arrived in the voxel, then
with TI2 = 1.5 s (27) the majority of the longitudinal relax-
ation will occur in the blood. So, the effects of exchange
between the static tissue compartment and the delivered
blood should be small. For a CBF of 0.01 mL/mL/s and base-
line CBV of 5%, the mean transit time through the vascular
bed of a voxel is 5 s, compared to our TI2 = 1.5 s (27). Sub-
sequently, little or no venous outflow of the delivered blood
would be expected.

We are also assuming that the transit time δt is the same
between activation and baseline. However, we expect that
the inference of CBF is driven by signal change between
tag and control, for which QUIPSS II is designed to be less
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sensitive to changes in δt. Therefore, we would not expect
the systematic overestimation of CBF, which is possible in
other techniques due to shortened δt with activation (9).
Further work is required to verify this.

VASO and CBV

In VASO, changes in tissue magnetization, Mtissue, are
obtained by assuming that all blood is nulled. By contrast,
in this work we obtain changes in the static compartment
(blood and tissue which is in the voxel at the time of tag-
ging, and remains there at the time of image acquisition), M ,
by modeling out the contribution of the delivered blood to
the measured signal. As investigated under Inferring CBV
Changes, M and Mtissue are only equivalent if we neglect the
signal from static blood. We showed using simulations from
a model of the static tissue and static blood compartments
that the contribution from the static blood is small for typ-
ical values of baseline CBV (5%) and CBF (0.01 mL/mL/s)
(Fig. 3).

However, Fig. 3 also illustrated that the error induced
in vn by assuming Mn = Mtissuen is sensitive to changes
in baseline CBF and baseline CBV. For example, at q0 =
0.015 mL/mL/s and CBV v0 = 0.03 the error has increased
to greater than 60%. This means that this method can not
be used as a general approach for inferring CBV changes,
as baseline shifts of this magnitude are to be expected. In
future work we intend to address this by incorporating the
model of the static tissue and static blood compartments
into the Bayesian inference. We would predict that this
could prove particularly powerful when combined with
alternative acquisition schemes such as the combined ASL,
VASO, and BOLD imaging technique of Yang et al. (8).

Noise Modeling

In our model we are assuming a different AR and noise
precision parameter for the two different echo times. This
allows for the possibility that any noise in the system occur-
ring at the level of R∗

2 fluctuations will manifest differently
at the two different echo times being used. We show in
Fig. 11 that the AR parameters in the visual dataset at
the shortest echo time (9 ms) are significantly lower than
those at the longest echo time (30 ms). This suggests the
possibility that there is temporally correlated noise spe-
cific to R∗

2, which is likely to be physiological in origin.
In future, instead of having two different sets of noise
parameters, it should be possible to link the correlations
between echo times by modeling the noise at the level of
fluctuations in R∗

2. Similarly, noise could be modeled at the
level of CBF and M fluctuations to help us better under-
stand the different contributions to the overall noise in the
data.

On a 2-GHz Intel PC the technique takes approxi-
mately 30 min on a single slice of the visual data. Future
work will be done on alternative inference techniques to
MCMC, which should speed up the inference considerably.
For example, approximate Bayesian inference approaches
such as Laplace or variational Bayes could be used and are
orders of magnitude faster (31).

CONCLUSIONS

In this work an approach has been developed that pro-
vides simultaneous inference on hemodynamic changes
via a nonlinear physiological model of dual-echo ASL data.
Importantly, this includes a significant contribution by
changes in the static magnetization, M , to the ASL signal.
The required multivariate, nonlinear inference is carried
out using a Bayesian framework. This approach is able
to extract probabilistic estimates of percentage changes of
CBF, R∗

2, and the static magnetization, M , and provides
increased sensitivity in inferring CBF changes and reduced
contamination in inferring BOLD changes when compared
with linear modeling approaches on single-echo ASL data.

APPENDIX A

Priors

In using a Bayesian framework we are able (and indeed
have) to express our prior belief about the parameters
in the model. We use simple Uniform priors, with hard
constraints on the range of allowed parameter values but
otherwise noninformative. For the percentage changes in
CBF, R∗

2, and M we limit the ranges to

p(Qj ) ∼ Uniform(−1000%, 1000%),

p(Rj ) ∼ Uniform(−1000%, 1000%)

p(Mj ) ∼ Uniform(−1000%, 1000%) [21]

and where Uniform (lower, upper) indicates a Uniform dis-
tribution between lower and upper and zero probability
outside. The upper and lower limits correspond to the fact
that we do not expect changes in CBF, R∗

2, or M greater than
±1000%. This is to constrain the model inference to plausi-
ble physiological values. On the visual and motor datasets
used in this work, we found that we obtain the same results
with or without these limits.

The transit time delay, δt, is the time between when the
blood leaves the tag region and when it arrives in the imag-
ing region. To be consistent with our assumption in using
QUIPSS II that all of the tagged bolus of time width TI1

has entered the imaging region before image acquisition,
we assume that 0 < δt < TI2 − TI1. The prior is otherwise
noniformative:

p(δt) ∼ Uniform(0, TI2 − TI1). [22]

The remaining signal model parameters, r0, β, M0, just
require positivity constraints but are otherwise noninfor-
mative:

p(q0) ∼ Uniform(0, ∞), p(r0) ∼ Uniform(0, ∞),

p(M0) ∼ Uniform(0, ∞). [23]

For the noise parameters we use a non informative refer-
ence prior for the variance parameters and a noninforma-
tive uniform prior for the autoregressive parameters:

p(φc) = 1/φc , p(ac) = Uniform(−1, 1). [24]
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APPENDIX B

Analytic Marginalization of the Noise
Variance Parameters

We can perform the marginalization integrals in Eq. [15] for
the noise variance parameters, φc , analytically:

p(θ, a1, a2|y1, y2) =
∫ ∞

−∞

∫ ∞

−∞
p(θ, ϑ1, ϑ2|y1, y2)dφ1dφ2.

[25]

Inserting Eq. [16] and using the priors from Appendix A
this can be shown to give

p(θ, a1, a2|y1, y2) = p(θ)p(a1)p(a2)
∫ ∞

−∞
p(y1|θ, φ1)p(φ1)dφ1

×
∫ ∞

−∞
p(y2|θ, ϑ2)p(φ2)dφ2, [26]

where

∫ ∞

−∞
p(yc|θ, φc)p(φc)dφc =

[∑
n

(ecn − acecn−1)2

]−N/2

,

[27]

where ecn = ycn − pcn, and the priors are given in
Appendix A.

APPENDIX C

Markov Chain Monte Carlo Sampling

We can perform the marginalization integrals in Eq. [15]
for the autoregression parameters and signal parameters
by drawing samples in parameter space from the joint
posterior distribution. This implicitly performs the inte-
grals numerically. Markov Chain Monte Carlo (MCMC) (see
Gilks (32) for a text on MCMC) is a sampling technique
that addresses this problem by proposing samples prefer-
entially in areas of high probability. This allows for many
samples to be drawn and, in many cases, for the posterior
PDF to be built in a relatively short period of time.

We use single-component Metropolis–Hastings jumps
(i.e., we propose separate jumps for each of the parame-
ters in turn) for all parameters. We use separate Normal
proposal distributions for each parameter, with the mean
fixed on the current value, and with a scale parameter σi

for the ith parameter that is updated every 30 jumps. At the
�th update σi is updated according to

σ�+1
i = σ�

i S
(1 + A + R)

(1 + R)
, [28]

where A and R are the number of accepted and rejected
jumps since the last σi update, respectively, S is the desired
rejection rate, which we fix at 0.5. A burn-in of 5000 jumps
is used (this ensures convergence such that the subsequent
samples are from the true PDF), followed by a further 5000
jumps, with the result of every 10th jump stored as a sample
from the PDF.

APPENDIX D

Saturated Blood Signal in Q2TIPS

In QUIPSS II the entire tag region is saturated at time TI1,
whereas in Q2TIPS the leading edge of the tag region is
effectively repeatedly saturated from time TI1 to time TI3

after the tag is applied. We can modify the QUIPSS II
saturated blood term in Eqs. [4] and [5],

ρb
0q0(1 + qn/100)(TI2 − TI1 − δt)(1 − e−(TI2−TI1)/T1b ) [29]

when using Q2TIPS to take this difference into account.
With Q2TIPS we can say that saturated blood arriving

at time t after the tag is applied (δt + TI1 < t < TI2) will
have received the saturation pulse at approximately time
t−δt. Therefore, the saturated blood magnetization that has
arrived in the voxel at time t = TI2 in tag or control is

ρb
0q0(1 + qn/100)

∫ TI2

δt+TI1
(1 − e−(TI2−(t−δt)/T1b))dt

= ρb
0q0(1 + qn/100)

(
(TI2 − TI1 − δt)

+ T1be−(TI2−TI1)/T1b − T1be−δt/T1b
)
. [30]

APPENDIX E

Static Compartment Model

We assume that the delivered arterial blood replaces the
static blood and that VASO water exchange is reflected in
changes in the volume of the static blood compartment.
Subsequently, the static blood signal, yb, consists of blood
that has been replaced by delivered blood plus changes in
volume due to VASO water exchange,

yb = (v0(1 + vn/100) − q0(1 + qn/100)TI2)sbrbK , [31]

where sb = (1 − exp(−TI2/T1b)), rb is the proton density of
blood, and K is a constant that converts proton density into
the MR signal. Similarly, the static blood signal, yt , consists
of changes in volume due to VASO water exchange,

yt = (1 − v0(1 + vn/100))strtK , [32]

where st = (1 − exp(−TI2/T1t)), and rt is the proton den-
sity of gray matter tissue. We can now calculate the overall
percentage change in the static compartment as

Mn = 100
(v0vn/100 − q0qnTI2/100)sbrb − v0vnstrt/100

(v0 − q0TI2)sbrb + (1 − v0)strt
.

[33]
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