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Today’s Topics

* Bloch Equation

e Gradients

* Signal Equation

* k-space trajectories

* Spin-echo/ gradient echo
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Magnetic Moment and
Angular Momentum

A charged sphere spinning about its axis
has angular momentum and a magnetic moment.

This is a classical analogy that is useful for
understanding quantum spin, but remember that
it is only an analogy!

Relation: p =y S where y is the gyromagnetic ratio and

S is the spin angular momentum.
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Precession

Analogous to motion of a gyroscope

Precesses at an angular frequency of

C% This is known as the Larmor frequency.
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Magnetization Vector

M 1 Vector sum of the magnetic

= V E Y; moments over a volume.
protons .
inv For a sample at equilibrium

in a magnetic field, the
transverse components of the

— M moments cancel out, so that
there is only a longitudinal
component.

Equation of motion is the
=yMxB same form as for individual
dt moments.
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Bloch Equation

JIM Mi+Mj (M -M,k
—=MxyB-—" = - :
a ", T, 1
Precession
Transverse Longitudinal
Relaxation Relaxation

i, j, k are unit vectors in the x,y,z directions.
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Free precession about static field
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Free precession about static field

dM,jdi| [B.M,-BM,
dM,/dt|=y|B,M.~B.M,
dM_jdt| |BM, -BM,

0 B, -BJM,
=y-B. 0 B |M,
B, -B, 0 ||M,
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Precession

dM jdl] [0 B, O]M,
M, /dt|=y|-B, 0 O|M,
dm_jdt| |0 0 oM.

Useful to define M =M _+ jM, My
aMm/dt =d/di(M, +iM,)
=-jyB,M
Solution is a time-varying phasor
M(1) = M(0)e ™" = M(0)e ™"
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Precession
M(t) = M(0)e™ '
= (MY(O)cosw(,t + M‘;(O)sinw(,t) + j(M‘\ (0)cosw,t — M (0) sinw‘,t)

In matrix form this is

M (1)
M|~

cosw,t  sinw,t|[M,(0)
—-sinwyt  cosw,t MJ.(())
The full solution is then a rotation about the z-axis.

M. ()| |[coswyt sinw,t O] M, (0)

M (t)|=|-sinwyt coswyt O M (0)

M (1) 0 0 1| M_(0)
M.(©0)
=R (w,t)| M, (0)
M.(0)
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Matrix Form with B=B,

dMm jdi] [-UT, yB, O M 0

x

M, Jdi|=|-yB, UT, 0 M |+| ©

y

amjat| | 0 0 -uTn|M.| |M,T,
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Z-component solution

M. (t) = My + (M _(0)- M,)e™"'"

Saturation Recovery

If M_(0) =0 then M_(1) = My(1-¢"''™")

Inversion Recovery

If M (0)=-M, then M (1) = Mo(l_ze—:/n)
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Transverse Component
M=M, +jM,

am/dt=d/a(M +iM,)
=—jlw,+UT,)M

M(t)= M(Q)e e
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Summary

1) Longitudinal component recovers exponentially.

2) Transverse component precesses and decays
exponentially.

o
05

Fact: Can show that T,< T, in order fot IM(t)l < M,
Physically, the mechanisms that give rise to T, relaxation
also contribute to transverse T, relaxation.
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Gradients

Spins precess at the Larmor frequency, which is
proportional to the local magnetic field. In a constant
magnetic field B,=B,, all the spins precess at the same
frequency (ignoring chemical shift).

Gradient coils are used to add a spatial variation to B, such
that B(x,y,z) = By+A B,(x,y,z) . Thus, spins at different
physical locations will precess at different frequencies.
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By Coil

MRI System
T

G, Coil

\m

Gy Coil
Radiofrequency Coil

Simplified Drawing of Basic Instrumentation.
Body lies on table encompassed by
coils for static field B,
gradient fields (two of three shown),

and radiofrequency field B.
g Y ! Image, caption: copyright Nishimura, Fig. 3.15
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7. Gradient Coil

B(mT)
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Gradient Fields

JB. oB. 0B.
B.(x,y,2) =B, + ax@x+g*y+ dz”z
4 =B, +Gx+Gy+G_z
L.,
t
il il
ttit t T
YY) TT
Gz=aBz>0 G=aBZ>O
0z Y gy
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Gradient Fields
Define
(—}EGXf+Gv}'+GZI€ Fexi+y+zk
So that “

Gx+Gy+Gz=G-F

Also, let the gradient fields be a function of time. Then
the z-directed magnetic field at each point in the
volume is given by :

B.(F,t)= B, + G(1)- F
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Static Gradient Fields

In a uniform magnetic field, the transverse magnetization
is given by: ‘
M(t) = M(O)e‘jm‘"e-”n

In the presence of non time-varying gradients we have

M(7) = M(F,0)e "D B
_ M(;,O)e__,'y(lso +G»F)e—t/T2(?)

- M(;’O)e—jmole—j'yG*re—t/Tz(r)
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Time-Varying Gradient Fields

In the presence of time-varying gradients the frequency
as a function of space and time is:

w(F,t) = yB.(F,1)
=yB, +YG(1)" F
=w, + Aw(7F,1)
The phase of each spin is o(7.1) = _f o0 )T
= -yt + Ag(F,1)
Where the incremental phase due to the gradients is

Ag(F,t)= —f(:Aw(?',r)dT

- -fo’yG(;,r)- Fdr
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Time-Varying Gradient Fields

~ .
Ag(F,1,) = —f(;'A(u(F.r)d‘r Ag(F,ty) = —fn\Am(F‘r)d‘l
Ag(F.1,) == [ Ao vt
=-Aw(P)t,

if Aw is non - time varying.
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Time-Varying Gradient Fields
The transverse magnetization is then given by
M(F,t) = M(7,0)e” e
= M(F,0)e™" 200! exp(—jf:Aw(F,t)dr)
= M(F,0)¢™"/T2(gm vt exp(—jyf{j(j?(ry 7d17)

It can be shown that this satisifies the differential
equation
am/dr =d/a(M, +iM,)

=—j(w, +1/T,)M
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Signal Equation

Signal from a volume
5,0 = [, MGFndv

=f\ f\f M(x,y,2,0)e™" Ot exp(—jyﬂ(_}(ry?dt)dxdydz

For now, consider signal from a slice along z and drop
the T, term. Define m(x,y)= ffu*“f'?M(; dz

To obtain
5,0 = [ [ mxyye exp(— irf[G@: ;dr)dxdy

TT Liv, BE280A, UCSD Fall 2004

Signal Equation

Demodulate the signal to obtain
s(t) =e’""s, (1)

= f‘ f\ m(,\:,y)exp(—jy‘ﬁé(‘ry ?d‘r)dxdy

= f,‘ f\ m(x,y)exp(—jy‘ﬂ[G\(‘r)x +G, (‘L’)y]d‘[)lb(dy
<[ [ mex y)exp(— J2(k (D + k, (r)y))dxdy

Where
_rr
k(=5 [.6.(madr

k=L
(0= J.6,@dr
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MR signal is Fourier Transform

s(t) = f) f“ m(x,y)exp(—j2n(k4\ (Ox+k, (t)y))dxdy
= Mk, (0),k, (1))
= F[m(x,)]

K (0)k, (1)
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K-space

At each point in time, the received signal is the Fourier
transform of the object
5(6) = M(k,(0,k,(1)) = F[m(x.y)]

K (0).k, (1)

evaluated at the spatial frequencies:

v
k(=5 [.6.(mar

"G (v)dt

-
k@0=5-),G,

Thus, the gradients control our position in k-space. The
design of an MRI pulse sequence requires us to
efficiently cover enough of k-space to form our image.

TT Liv, BE280A, UCSD Fall 2004

Interpretation

2Ax -Ax 0 Ax 2Ax

0
—j2a| —|a > > > >
exp( Jj n(w)r)

)] ] |

|
|
frdii i
|
|

Slower AB(z)=G,z Faster
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K-space trajectory
G,

IS} 5}

—, k
k(1) k(1)

y 13
k(t) = Efnc\mdr
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( k(1))

k,(ty)

TT Liv, BE280A, UCSD Fall 2004

k
ty t *

k(r) k(1)
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G0
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Spin-Warp
G0
Ky
L74i degrees
kX
Gy(0)

BN
- E;d Start
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Spin-Warp Pulse Sequence

RFi | 1

GO = — —
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k
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