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What is Noise?
Random  fluctuations in either the imaging system or the
object being imaged.

Quantization Noise: Due to conversion from analog
waveform  to digital number.

Quantum Noise: Random fluctuation in the number of
photons emittted and recorded.

Thermal Noise:   Random fluctuations present in all
electronic systems.  Also,  sample noise in MRI

Other types: flicker, burst, avalanche  - observed in
semiconductor devices.
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Quantization Noise

Signal s(t)

r(t) = s(t) + q(t)
Although the noise is deterministic, it is useful to model 
the noise as a random process. 

Quantization noise
q(t)

Quantized Signal r(t)
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Poisson Process
Events occur at random instants of time at an average rate

of λ events per second.

Examples: arrival of customers to an ATM, emission of
photons from an x-ray source, lightning strikes in a
thunderstorm.

Assumptions:

1) Probability of more than 1 event in an small time
interval is small.

2) Probability of event occurring in a given small time
interval is independent of another event occuring in
other small time intervals.
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Poisson Process

€ 

P N(t) = k[ ] =
λt( )k

k!
exp(−λt)

λ =  Average rate of events per second
λt =  Average number of events at time t
λt =  Variance in number of events

Probability of interarrival times
P T > t[ ] = e− λt
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Example

€ 

A service center receives an average of 15 inquiries
per minute. Find the probability that 3 inquiries arrive
in the first 10 seconds. 

λ =15 /60 = 0.25
λt = 0.25(10) = 2.5

P[N(t =10) = 3) =
(2.5)3

3!
exp(−2.5) = .2138
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Quantum Noise
Fluctuation in the number of photons emitted by the x-ray
source and recorded by the detector.

€ 

Pk =
N0

k exp(−N0)
k!

Pk :  Probability of emitting k photons in a given time
       interval.

N0 :  Average number of photons emitted in that
        time interval =  λt
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Transmitted Photons

€ 

Qk =
pN0( )k exp(−pN0)

k!

Qk :  Probability of k photons making it through object  

N0 :  Average number of photons emitted in that
        time interval =  λt

p = exp(− µdz) =  probability of proton being transmitted∫
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Example

€ 

Over the diagnostic energy range, the photon
density is approximately 2.5×1010  photons/cm2 /R
where R stands for roentgen (unit for X- ray exposure).

A typical chest x - ray has an exposure of 50 mR.
For transmission in regions devoid of bone, 
p = exp(− µdz) ≈ 0.05∫   
What are the mean and standard deviation of the number of
photons that make it it to a  1 mm2 detector?

pN0 = 0.05 ⋅2.5×1010 ⋅ .050 ⋅ (.1)2 = 6.25×105  photons

mean =  6.25×105  photons
standard deviation =  6.25×105 = 790 photons
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Contrast and SNR for X-Rays

€ 

Contrast = C =
ΔI
I 

SNR =
ΔI
σ I

=
Mean difference in #  of photons
Standard Deviation of #  photons

=
CpN0

pN0

= C pN0
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€ 

C =
ΔI
I 

=
N0 exp(−µ1L) −exp − µ1(L −W ) + µ2W( )( )( )

N0 exp(−µ1L)

SNR =
CN0Aexp(−µ1L)

N0Aexp(−µ1L)
= C N0Aexp(−µ1L)

µ1

µ2

L

W
Area A
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Signal to Noise Ratio for CT

€ 

SNR =
Cµ 
σ µ

=
Cµ 

π 2

n hM
2ρ0

3

3

∝KCwµ n AM

C = contrast
w = width of detector
µ =  mean attenuation
n  =  mean density of transmitted photons 
A =  area of detector
M =  number of views
ρ0 = K / w =  bandwidth of Ram- Lak filter
K = scaling constant, order unity
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Thermal Noise
Fluctuations in voltage across a resistor due to random
thermal motion of electrons.
Described by J.B. Johnson  in 1927 (therefore sometimes
called Johnson noise). Explained by H. Nyquist in 1928.

€ 

V 2 = 4kT ⋅ R ⋅BW

Variance in  Voltage Resistance

Bandwidth

Temperature

T.T. Liu, BE280A, UCSD Fall 2004

Thermal Noise

€ 

V 2 = 4kT ⋅ R ⋅BW

At room temperature, noise in a 1 kΩ resistor is
V 2 /BW =16×10−18  V 2 /Hz

In root mean squared form, this corresponds to 
V/BW =  4 nV/ Hz .

Example :  For BW =  250 kHz and 2 kΩ resistor, 
total noise voltage is 

2 ⋅16×10-18 ⋅250×103 = 4 µV
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Thermal Noise

€ 

Noise spectral density is independent of frequency up
to 1013  Hz.  Therefore it is a source of white noise.

Amplitude distribution of the noise is Gaussian.
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Signal in MRI

€ 

Recall the signal equation has the form
sr (t) = M (x,y,z)e− t /T2 ( r )e− jω0t exp − jγ G τ( )

0

t

∫ ⋅ r(τ )dτ 
 
  

 
 ∫∫∫ dxdydz

€ 

Faraday's Law
EMF = −

∂φ
∂t

φ = Magnetic Flux = B1(x,y,z) ⋅M(x,y,z)dV∫

B0
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Signal in MRI

€ 

Signal in the receiver coil
sr (t) = jω0B1xy M (x,y,z)e− t /T2 ( r )e− jω0t exp − jγ G τ( )

0

t

∫ ⋅ r(τ )dτ 
 
  

 
 ∫ dV

Recall, total magnetization is proportional to B0

Also ω0 = γB0 .

Therefore, total signal is proportional to B0
2
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Noise in MRI

€ 

Primary sources of noise are :
1) Thermal noise of the receiver coil
2) Thermal noise of the sample. 

Coil Resistance :  At higher frequencies, the EM waves
tend to travel along the surface of the conductor (skin
effect).  As a result, 
Rcoil  ∝  ω0

1/2  ⇒ Ncoil
2  ∝  ω0

1/2 ∝B0
1/ 2

Sample Noise :  Noise is white, but differentiation
process due to Faraday's law introduces a multiplication
by ω0 . As a result, the noise variance from the sample
is proportional to ω0

2 .

Nsample
2  ∝ω0

2 ∝  B0
2
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SNR in MRI

€ 

SNR∝ B0
2

αB0
1/ 2 + βB0

2

If coil noise dominates

SNR∝B0
7/ 4

If sample noise dominates

SNR∝B0
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Random Variables

€ 

A random variable X is characterized by its cumulative
distribution function (CDF)

Pr(X ≤ x) = FX (x)

The derivative of the CDF is the probability density
function(pdf)

fX (x) = dFX (x) /dx

The probability that X will take on values between two
limits x1 and x2 is 

Pr(x1 ≤ X ≤ x2) = FX (x2) −FX (x1) = fX (x)dx
x1

x2∫

T.T. Liu, BE280A, UCSD Fall 2004

Random Processes

  

€ 

A random process is an indexed family of random
variables

Examples :  
discrete :   X1 ,X2 ,K,XN
continuous :  X(t)

If all the random variables share the same pdf and 
take on values independently, the process is said to
be independent and identically distributed (iid).

Example :  unbiased coin tosses

If the joint statistics of the process do not vary
with index, the process is said to be stationary.
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Random Processes

€ 

Correlation

R(t1 ,t2) = E(X(t1)X
∗ (t2))

R(i, j) = E(Xi X j )

Covariance

C(t1 ,t2) = E X(t1) − X (t1)( ) X(t2) − X (t2)( )
∗ 

 
  

 
 

C(i, j) = E Xi − X i( ) X j − X j( )( )
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Power Spectral  Density

€ 

For stationary process

R(t,t2) = R(τ ) = E(X(t)X∗ (t + τ )) for τ = t2 − t

R(i, j) = R(m) = E(XiXi+m) for m = j − i

Power Spectral Density

SX ( f ) = F R(τ ){ }

SX ( f ) = F R(m){ }
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Example

€ 

Thermal noise has a flat power spectrum over the
range of frequencies of interest. 
So,

SX( f ) =σ 0
2

Therefore

RX (τ ) =σ 0
2δ(τ )
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Vector Notation

  

€ 

X =

X1
X2
M

XN

 

 

 
 
 
 

 

 

 
 
 
 

R = E(XXH ) = E

X1X1
∗ X1X2

∗ L X1XN
∗

X2X1
∗ X2X2

∗ L X2XN
∗

M M O M

XN X1
∗ XN X2

∗ L XN XN
∗

 

 

 
 
 
 

 

 

 
 
 
 

 

 

 
 
 
 

 

 

 
 
 
 
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Example

  

€ 

X denotes a stationary random process with mean zero
and correlation R[m] =σ 2δ[m]

R = E(XXH ) =

σ 2 0 L 0
0 σ 2 L 0
M M O M

0 0 L σ 2

 

 

 
 
 
 

 

 

 
 
 
 

    
   =σ 2I
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Review: Orthonormal basis

€ 

A set of vectors S = bi{ } forms an orthonormal basis, if 

bi,b j = 0 for i ≠ j,  every basis vector is normalized to have unit

length bi =1, and any vector y in the space can be expressed

as a linear combination of the basis vectors, i.e. y = ck
k
∑ bk .
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Finding Expansion Coefficients

  

€ 

Define the basis matrix as  B = b1 b2 L bN[ ].

Then any vector y = Bc = b1 b2 L bN[ ]

c1

c2

M

cN

 

 

 
 
 
 

 

 

 
 
 
 

Multiply both sides of the equation by B−1, to obtain c = B−1y.
Because the basis vectors are orthonormal BHB = I, and
therefore  B−1 = BH . So, we can also write  c = BH y.
By definition, B is an orthonormal or unitary matrix. 
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Expansion Coefficients

  

€ 

c = BH y =

b1H

b2H

M

bN
H

 

 

 
 
 
 

 

 

 
 
 
 

y =

b1 ,y
b2 ,y

M

bN ,y

 

 

 
 
 
 

 

 

 
 
 
 

For any vector y, the ith expansion coefficient is  the inner
product of the ith orthonormal basis vector with y.
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Noise after inverse transform

€ 

Let the coefficients be described by a zero-mean, stationary
random process C with correlation matrix RC =σ 2I

Now let  X = BC, then

RX = E XXH( )
     = E BCCHBH( )
     = BE CCH( )BH

     =σ 2BBH

     =σ 2I

Note :  From orthonormality of basis functions BHB = I. 
Therefore  BBHBBH = BBH , so BBH = I.
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DFT Basis Functions

€ 

DFT:  G[m] = g n[ ]
n=0

N−1

∑ e− j2πmn / N

Basis Functions are therefore :

bm[n] = e j2πmn / N

Inverse DFT:  g[n] =
1
N

G m[ ]
m=0

N−1

∑ e j2πmn / N
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Noise after inverse transform

€ 

Let the coefficients be described by a zero-mean, stationary
random process C with correlation matrix RC =σ 2I

Now let  X =
1
N
BC, then

RX = N −2E XXH( )
     = N −2E BCCHBH( )
     = N −2BE CCH( )BH

     =σ 2N −2BBH

     =
σ 2

N
I

Note :   BBH = NI.
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Noise in k-space

€ 

€ 

Recall that in MRI we acquire samples in k - space.
The noise in these samples is typically well described
by an iid random process. 
For Cartesian sampling, the noise in the image domain
is then also described by an iid random process.

For each point in k - space, SNR = S(k)
σ n

 where

S(k) is the signal and  σ n  is the standard deviation of
each noise sample.
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Noise in image space

€ 

€ 

If noise variance per sample in k - space is σ n
2 .

Noise variance per sample in image space σ n
2 /N .

SNR∝ S0

σ n / N
= N S0

σ n
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Signal Averaging

€ 

€ 

We can improve SNR by acquiring additional k - space
measurements.  

Consider two measurements of a point in k - space with
values 

y1 = y0 + n1
y2 = y0 + n2

The sum of the two measurements is 2y0 + n1 + n2( ).

If the noise in the measurements is independent, then 
the variances sum and the total variance is 2σ n

2

SNRTot =
2y0

2σ n

= 2SNRoriginal

In general, SNR∝ Nave
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Effect of Readout Window

€ 

€ 

ADC samples acquired with sampling period Δt.
Thermal noise per sample is σ n

2 = Δf =
1
Δt

If we double length of the readout window, the
noise variance per sample decreases by two.

The noise standard deviation decreases by 2, and
the SNR increases by 2.

In general, SNR∝ TRead = Nkx
Δt
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SNR and Phase Encodes

€ 

€ 

Assume that spatial resolution is held constant.
What happens if we increase the number of phase
encodes? Recall that δy =

1
Wky

.  Thus, increasing

the number of phase encodes NPE , decreases Δky  and
increases FOVy .

If we double the number of phase encodes, each point
in image space has double the number of k - space lines
contributing to its signal.  The noise variances sum. 
The SNR therefore goes up by 2.

In general SNR∝ NPE  
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Overall SNR

€ 

€ 

SNR∝ Signal
σ n

∝
ΔxΔyΔz
σ n

Putting everything together, we find that

SNR∝ NaveNxNPEΔtΔxΔyΔz

      = Measurement Time ⋅Voxel Volume

In general,

SNR∝ Measurement Time ⋅Voxel Volume ⋅ f (ρ,T1 ,T2)


