Positron Emission Tomography Physics, Instrumentation, Data Analysis

Carl K. Hoh, MD

Department of Radiology UCSD Medical Center

- Theoretical ideal scintillation material
 - High density (Z)
 - Efficient scintillator (high & quick light output)
- Newer scintillators (more efficient)
 - Leutetium orthosilicate (LSO)
 - Gadolinium orthosilicate (GSO)
 - Use in 3D mode

Crystals used in PET						
Scintillators	Effective Z	Decay (µs)	Index of refraction	Relative light yield	Peak wavelength (nm)	
Sodium iodide	50	0.23	1.85	100	410	
Bismuth germanate	74	0.30	2.15	13	480	
Lutetium oxyorthosilicate	66	0.04	1.82	65	420	
Gadolinium oxyorthosilicate	59	0.06	1.85	25	430	
Barium fluoride	52	0.62 0.0006	1.49	13 3	310 220	

PET Scanner Design

- Smaller individual crystal size = better spatial resolution
- Physical limit to size of photomultiplier tube
- Crystal blocks
 - Cut block detector type
 - Reflector block detector type
- Buckets or modules

Distribution of light from a single crystal element to 4 PMTs Pulse strength Light Pipe Photon X = (B+D)/(A+B+C+D) γ PMT B

PMT D

Block Detector

Block detector with 8x8 elements and 4 photomultiplier tubes

Image of the Xpos and Ypos determined from the four photomultiplier tubes outputs.

2D and 3D Detector Configurations

- 2D mode: use of septa
 - Limit axial FOV of events to 1-2 elements
 - Reduce the number of scatter
- 3D mode: retract or no septa
 - Increase sensitivity x 4-10
 - But also increase scatter and random events
 - Decreased sensitivity at end of axial FOV
 - High count rate: dead time problems
 - Huge acquired data sets

BGO systems

- Relatively poor energy resolution
- Need wide energy window: 300-650 keV
- Relatively high scatter detection
- Need for scatter correction

Coincidence Detection: Trues, Random, & Scatter Events

- True event: pair of annihilation gamma rays - 6-12 nanosecond event timing window
- Random event: detection of gamma rays from two different annihilation events
 - Delayed event timing window
- Scatter event: due to Compton effect in tissues
 15% of data in 2D mode

PET vs SPECT Images

- Spacial Resolution: 4 mm vs > 12 mm
- Count Rate: 50-100 vs 1 (< 1% of pt activity)
- Acquisition: simultaneous (ring) vs rotating line profile

Reconstruction Algorithms

- Filtered Back Projection
 - Simple
 - Quick
 - Streak artifacts
- Iterative Reconstruction
 - Need fast computer

Image Reconstruction

Filtered Back Projection

Iterative Reconstruction

Attenuation Correction by Transmission Imaging

- Tissue attenuation more visible on PET
 - Annhilation photon pairs essentially "see" full thickness of the body
- Measured Attenuation
 - By transmission imaging
- Calculated Attenuation
 - in some head/brain scans

Artifacts with Measured Attenuation Correction due to Patient Movement

Normalization					
	Before Normalization	After Normalization			
(rotating					
plane or rod source)	1,8,1	1,8,1			
Normalization corrects for variations in					
	erystar geometrie		UCSD		

PET Quality Control

Scan Type	When to Perform
1. Daily Check Scan (blank)	Every day
2. Bucket Setup	When system is drifting
3. Normalization	Weekly to monthly,
	or after bucket setup
4. Phantom calibration	On a new ⁶⁸ Ge phantom

UCSD

Adjust constant fraction discriminators Adjust x-y position of the position profile Adjust the time alignment (electronics) Adjusts for different type of PMTs Reports bad detector blocks

UCSD

PET Quality Control

PET Quality Control

Bucket Setup (2hrs)

3D and 2D Normalization (~6.5 hrs)

Phantom Source: 0.5 mCi for 3D 3.0 mCi for 2D

Acquire calibration scan (30 mins) Crystal Efficiency scan (4 hrs or 50M cnts) Calculates Normalization file Set to the default normalization file. Reconstructs calibration scan with attn corr 2D standard blank scan (2hrs or 200M cnts) Computes ECF (correction factor)

Data Analysis: Tracer Kinetic Modeling

- PET can image [radiotracer] in tissue
 - Calibration factor
 - Tomograpic technique
 - Accurate tissue attenuation correction
- Accurate time activity curves
 - Dynamic acquisitions
 - Fine temporal framing resolution

Tracer Kinetic Modeling Assumptions

- 1. The tracer is structurally related to the natural substance in the dynamic process.
- 2. The tracer is measurable and distinguishable from the natural substance that it intends to trace.
- 3. The tracer is used in "trace" amounts; does not perturb the original metabolic state or physiologic condition.
- 4. The process being measured has "steady state" kinetics; the reaction rates are constants.

$$C_{i}(t) = \int (C_{e}(t) + C_{m}(t) + k_{5}C_{p}(t)) dt$$

$$\underbrace{C_{p}(t)}_{k_{2}} \underbrace{C_{e}(t)}_{k_{2}} \underbrace{C_{e}(t)}_{k_{4}} \underbrace{C_{m}(t)}_{k_{4}}$$

$$\underbrace{\frac{d[C_{e}(t)]}{dt}}_{dt} = \underbrace{-(k_{2}+k_{3})C_{e}(t) + k_{4}C_{m}(t)}_{k_{5}C_{e}(t) - k_{4}C_{m}(t)} + \underbrace{k_{1}C_{p}(t)}_{k_{5}C_{e}(t) - k_{4}C_{m}(t)} + \underbrace{k_{5}C_{p}(t)}_{k_{5}C_{p}(t)}$$

Net Uptake Rate Constant of FDG: K _{NLR}					
$\frac{d[C_{m}(t)]}{dt} = \frac{k_{1}}{k_{2}}$	$\frac{k_3}{k_2 + k_3} C_p(t) +$	$\frac{k_2 * k_4}{k_2 + k_3} C_{\rm m}(t)$			
Net FDG = $\frac{k_1}{k_2}$	$(k_{3})_{2} + k_{3}$ C _p (t)	$= K_{NLR} C_p(t)$			
Net Glucose = $\frac{k_1}{k}$		$= \frac{K_{NLR}}{LC} [Glucose]$			
		NLR = non-linear regression LC = lumped constant			

Patlak Graphical Analysis

$$\frac{C_{i}(t)}{C_{p}(t)} = K_{PAT} \frac{\sum C_{p}(t) dt}{C_{p}(t)} + V_{pAT}$$

Y = slope X + B

$$K_{PAT} = slope = \frac{\sum Y X - n X Y}{\sum X^2 - n X^2}$$

least squares linear regression

Patlak CS J Cereb Blood Flow Metab 1983; 3: 1-7.

