
\qquad
\qquad
\qquad

Topics

\qquad
\qquad

- The concept of spin
- Precession of magnetic spin
- Relaxation \qquad
- Bloch Equation
\qquad
\qquad
\qquad

Spin

\qquad
\qquad

- Intrinsic angular momentum of elementary particles -- electrons, protons, neutrons.
- Spin is quantized. Key concept in Quantum Mechanics.

The History of Spin

- 1921 Stern and Gerlach observed quantization of magnetic moments of silver atoms
- 1925 Uhlenbeck and Goudsmit introduce the concept of spin for electrons.
- 1933 Stern and Gerlach measure the effect of nuclear spin.
- 1937 Rabi predicts and observes nuclear magnetic resonance.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Energy in a Magnetic Field \qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

IT. Liu, BE280A, UCSD Fall 2005 \qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad understanding quantum spin, but remember that it is only an analogy! \qquad
\qquad
\qquad
\qquad

Quantization of Angular Momentum

\qquad

Because the magnetic moment is quantized, so is the \qquad angular momentum.

In particular, the z -component of the angular momentum Is quantized as follows:
$S_{z}=m_{s} \hbar$
\qquad
$m_{s} \in\{-s,-(s-1), \ldots s\}$
s is an integer or half intege
\qquad
\qquad

TT. Liu, BE280A, UCSD Fall 2005

Nuclear Spin Rules			
Number of Protons Number of Neutrons Spin Examples Even Even 0 ${ }^{12} \mathrm{C},{ }^{16} \mathrm{O}$ Even Odd $\mathrm{j} / 2$ ${ }^{17} \mathrm{O}$ Odd Even $\mathrm{j} / 2$ ${ }^{1} \mathrm{H},{ }^{23} \mathrm{Na},{ }^{31} \mathrm{P}$ Odd Odd j ${ }^{2} \mathrm{H}$			

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Hydrogen Proton

\qquad

Spin 1/2
$S_{z}=\left\{\begin{array}{l}+\hbar / 2 \\ -\hbar / 2\end{array}\right.$
\qquad
$\mu_{z}=\left\{\begin{array}{l}+\gamma \hbar / 2 \\ -\gamma \hbar / 2\end{array}\right.$
\qquad
\qquad
\qquad
\qquad
\qquad

Equilibrium Magnetization

\qquad

$$
\begin{aligned}
\mathbf{M}_{0} & =N\left\langle\mu_{z}\right\rangle=N\left(\frac{n_{u p}\left(-\mu_{z}\right)+n_{\text {down }}\left(\mu_{z}\right)}{N}\right) \\
& =N \mu \frac{e^{\mu_{z} B / k T}-e^{-\mu_{z} B / k T}}{e^{\mu_{B} / k T}+e^{-\mu_{z} B / k T}} \\
& \approx N \mu_{z}^{2} B /(k T) \\
& =N \gamma^{2} \hbar^{2} B /(4 k T)
\end{aligned}
$$

$\mathrm{N}=$ number of nuclear spins per unit volume Magnetization is proportional to applied field.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

| Gyromagnetic Ratios | | | |
| :---: | :--- | :--- | :--- | :--- |
| Nucleus Spin Magnetic
 Moment $\gamma /(2 \pi)$
 $(\mathrm{MHz} /$
 Tesla) Abundance
 ${ }^{1} \mathrm{H}$ $1 / 2$ 2.793 42.58 88 M
 ${ }^{23} \mathrm{Na}$ $3 / 2$ 2.216 11.27 80 mM
 ${ }^{31} \mathrm{P}$ $1 / 2$ 1.131 17.25 75 mM | | | |

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad which is 63.86 million cycles per second. For comparison, KPBS-FM transmits at 89.5 MHz . \qquad
\qquad
\qquad

Notation and Units

1 Tesla $=10,000$ Gauss \qquad
Earth's field is about 0.5 Gauss
0.5 Gauss $=0.5 \times 10^{-4} \mathrm{~T}=50 \mu \mathrm{~T}$
$\gamma=26752$ radians/second/Gauss
$\gamma=\gamma / 2 \pi=4258 \mathrm{~Hz} /$ Gauss
$=42.58 \mathrm{MHz} /$ Tesla
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Free Induction Decay (FID) \qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Relaxation

\qquad

An excitation pulse rotates the magnetization vector away from \qquad its equilibrium state (purely longitudinal). The resulting vector has both longitudinal $\mathbf{M}_{\mathbf{z}}$ and tranverse $\mathbf{M}_{\mathbf{x y}}$ components. \qquad
Due to thermal interactions, the magnetization will return to its equilibrium state with characteristic time constants. \qquad
T_{1} spin-lattice time constant, return to equilibrium of $\mathbf{M}_{\mathbf{z}}$
T_{2} spin-spin time constant, return to equilibrium of \mathbf{M}_{xy}
\qquad
\qquad
\qquad

Longitudinal Relaxation

\qquad

\qquad
\qquad
\qquad
Due to exchange of energy between nuclei and the lattice (thermal vibrations). Process continues until thermal equilibrium as \qquad determined by Boltzmann statistics is obtained.

The energy $\Delta \mathrm{E}$ required for transitions between down to up spins,
\qquad increases with field strength, so that T_{1} increases with \mathbf{B}.

TT. Luu. BE280, UCSD Fall 2005

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Transverse Relaxation

\qquad
$\frac{d \mathbf{M}_{x y}}{d t}=-\frac{M_{x y}}{T_{2}}$

Each spin's local field is affected by the z-component of the field due to other spins. Thus, the Larmor frequency of each spin will be slightly different. This leads to a dephasing of the transverse magnetization, which is characterized by an exponential decay.
T_{2} is largely independent of field. T_{2} is short for low frequency fluctuations, such as those associated with slowly tumbling macromolecules.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

T2 Values		
Tissue	T2 (ms)	Solids exhibit very short T_{2} relaxation times because there are many low frequency interactions between the immobile spins.
gray matter	100	
white matter	92	
muscle	47	
fat	85	
kidney	58	On the other hand, liquids show relatively long T_{2} values, because the spins are highly mobile and net fields average out.
liver	43	
CSF	4000	
Table: adapted from Nishimura, Table 4.2		
TT. Liu, BE280A, UCSD Fall 2005		

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Free precession about static field
\qquad
$\frac{d \mathbf{M}}{d t}=\mathbf{M} \times \gamma \mathbf{B}$
$=\gamma\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ M_{x} & M_{y} & M_{z} \\ B_{x} & B_{y} & B_{z}\end{array}\right|$
$=\gamma\left(\begin{array}{c}\hat{i}\left(B_{z} M_{y}-B_{y} M_{z}\right) \\ -\hat{j}\left(B_{z} M_{x}-B_{x} M_{z}\right) \\ \hat{k}\left(B_{y} M_{x}-B_{x} M_{y}\right)\end{array}\right)$

IT. Liu, BE280A, UCSD Fall 2005
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Free precession about static field
$\left[\begin{array}{l}d M_{x} / d t \\ d M_{y} / d t \\ d M_{z} / d t\end{array}\right]=\gamma\left[\begin{array}{l}B_{z} M_{y}-B_{y} M_{z} \\ B_{x} M_{z}-B_{z} M_{x} \\ B_{y} M_{x}-B_{x} M_{y}\end{array}\right]$

$$
=\gamma\left[\begin{array}{ccc}
0 & B_{z} & -B_{y} \\
-B_{z} & 0 & B_{x} \\
B_{y} & -B_{x} & 0
\end{array}\right]\left[\begin{array}{l}
M_{x} \\
M_{y} \\
M_{z}
\end{array}\right]
$$

TT. Liu, BE280A, UCSD Fall 2005
Precession
$\left[\begin{array}{l}d M_{x} / d t \\ d M_{y} / d t \\ d M_{z} / d t\end{array}\right]=\gamma\left[\begin{array}{ccc}0 & B_{0} & 0 \\ -B_{0} & 0 & 0 \\ 0 & 0 & 0\end{array}\right]\left[\begin{array}{l}M_{x} \\ M_{y} \\ M_{z}\end{array}\right]$
Useful to define $M \equiv M_{x}+j M_{y}$
$d M / d t=d / d t\left(M_{x}+i M_{y}\right)$
$=-j \gamma B_{0} M$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Z-component solution
$M_{z}(t)=M_{0}+\left(M_{z}(0)-M_{0}\right) e^{-t / T_{1}}$
Saturation Recovery
If $M_{z}(0)=0$ then $M_{z}(t)=M_{0}\left(1-e^{-t / T_{1}}\right)$
Inversion Recovery
If $M_{z}(0)=-M_{0}$ then $M_{z}(t)=M_{0}\left(1-2 e^{-t / T_{1}}\right)$
Tr.Lu., Bezsas. ccsp fanl 200s
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Fact: Can show that $\mathrm{T}_{2}<\mathrm{T}_{1}$ in order for $|\mathrm{M}(\mathrm{t})| \leq \mathrm{M}_{0}$ Physically, the mechanisms that give rise to T_{1} relaxation also contribute to transverse T_{2} relaxation.

