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Gradients
Spins precess at the Larmor frequency, which is
proportional to the local magnetic field. In a constant
magnetic field Bz=B0, all the spins precess at the same
frequency (ignoring chemical shift).

Gradient coils are used to add a spatial variation to Bz
such that Bz(x,y,z) = B0+Δ Bz(x,y,z) . Thus, spins at
different physical locations will precess at different
frequencies.
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Simplified Drawing of Basic Instrumentation.
Body lies on table encompassed by

coils for static field Bo,
     gradient fields (two of three shown),

      and radiofrequency field B1.

MRI System

Image, caption: copyright Nishimura, Fig. 3.15
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Gradient Fields
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Interpretation

∆Bz(x)=Gxx

Spins Precess at
at γB0+ γGxx
(faster)

Spins Precess 
at γB0- γGxx
(slower)

x

Spins Precess at γB0
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Rotating Frame of Reference
Reference everything to the magnetic field at isocenter.
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Interpretation
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Fig 3.12 from Nishimura

kx=0; ky=0 kx=0; ky≠0
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Phase with time-varying gradient
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K-space trajectory
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K-space trajectory
Gx(t)
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Spin-Warp
Gx(t)

t1

ky

Gy(t)

kx

TT Liu, BE280A, UCSD Fall 2007

Spin-Warp
Gx(t)

t1 ky

Gy(t)

kx

TT Liu, BE280A, UCSD Fall 2007

Spin-Warp Pulse Sequence

Gx(t)

ky

kx

Gy(t)

RF
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Gradient Fields
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Also, let the gradient fields be a function of time. Then
the z-directed magnetic field at each point in the
volume is given by :
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Static Gradient Fields
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In a uniform magnetic field, the transverse magnetization
is given by:

In the presence of non time-varying gradients we have
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Time-Varying Gradient Fields
In the presence of time-varying gradients the frequency
as a function of space and time is:
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Phase
Phase = angle of the magnetization phasor
Frequency = rate of change of angle (e.g. radians/sec)
Phase = time integral of frequency
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Where the incremental phase due to the gradients is
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Phase with constant gradient
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Time-Varying Gradient Fields
The transverse magnetization is then given by
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Signal Equation
Signal from a volume
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For now, consider signal from a slice along z and drop
the T2 term. Define
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Signal Equation
Demodulate the signal to obtain
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MR signal is Fourier Transform
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Recap
• Frequency = rate of change of phase.
• Higher magnetic field -> higher Larmor frequency ->

phase changes more rapidly with time.
• With a constant gradient Gx,  spins at different x locations

precess at different frequencies -> spins at greater x-values
change phase more rapidly.

• With a constant gradient, distribution of phases across x
locations changes with time. (phase modulation)

• More rapid change of phase with x -> higher spatial
frequency kx
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K-space
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At each point in time, the received signal is the Fourier
transform of the object

evaluated at the spatial frequencies:

Thus, the gradients control our position in k-space. The
design of an MRI pulse sequence requires us to
efficiently cover enough of k-space to form our image.
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K-space trajectory
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Units
Spatial frequencies (kx, ky) have units of 1/distance.
Most commonly, 1/cm

Gradient strengths have units of (magnetic
field)/distance. Most commonly G/cm or mT/m

γ/(2π) has units of  Hz/G or Hz/Tesla.
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Example
Gx(t) = 1 Gauss/cm
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