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Bioengineering 280A
Principles of Biomedical Imaging

Fall Quarter 2008
MRI Lecture 6: Noise and SNR

Thomas Liu, BE280A, UCSD, Fall 2008

What is Noise?
Fluctuations in either the imaging system or the object
being imaged.

Quantization Noise: Due to conversion from analog
waveform  to digital number.

Quantum Noise: Random fluctuation in the number of
photons emittted and recorded.

Thermal Noise:   Random fluctuations present in all
electronic systems.  Also,  sample noise in MRI

Other types: flicker, burst, avalanche  - observed in
semiconductor devices.

Structured Noise: physiological sources, interference
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Quantization Noise

Signal s(t)

r(t) = s(t) + q(t)
Although the noise is deterministic, it is useful to model 
the noise as a random process. 

Quantization noise
q(t)

Quantized Signal r(t)
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Physiological Noise
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Noise and Image Quality

Prince and Links 2005
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Thermal Noise
Fluctuations in voltage across a resistor due to random
thermal motion of electrons.
Described by J.B. Johnson  in 1927 (therefore sometimes
called Johnson noise). Explained by H. Nyquist in 1928.

! 

V
2

= 4kT " R "BW

Variance in  Voltage Resistance

Bandwidth

Temperature
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Thermal Noise

! 

V
2 = 4kT " R "BW

At room temperature, noise in a 1 k# resistor is

V
2

/BW =16$10
%18

 V
2
/Hz

In root mean squared form, this corresponds to 

V/BW =  4 nV/ Hz .

Example :  For BW =  250 kHz and 2 k# resistor, 
total noise voltage is 

2 "16$10
-18
"250$10

3 = 4 µV
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Thermal Noise

! 

Noise spectral density is independent of frequency up
to 10

13
 Hz.  Therefore it is a source of white noise.

Amplitude distribution of the noise is Gaussian.
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Signal in MRI

! 

Recall the signal equation has the form

s
r
(t) = M (x,y,z)e

" t /T2 ( r )
e
" j#0t exp " j$ G %( )

0

t

& ' r(% )d%( 
) 
* + 

, 
- &&& dxdydz

! 

Faraday's Law

EMF = "
#$

#t

$ = Magnetic Flux = B
1
(x,y,z) %M(x,y,z)dV&

B0
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Signal in MRI

! 

Signal in the receiver coil

s
r
(t) = j"

0
B

1xy
M (x,y,z)e

# t /T2 ( r )
e
# j"0t exp # j$ G %( )

0

t

& ' r(% )d%( 
) 
* + 

, 
- & dV

Recall, total magnetization is proportional to B
0

Also "
0

= $B
0
.

Therefore, total signal is proportional to B
0
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Noise in MRI

! 

Primary sources of noise are :
1) Thermal noise of the receiver coil
2) Thermal noise of the sample. 

Coil Resistance :  At higher frequencies, the EM waves
tend to travel along the surface of the conductor (skin
effect).  As a result, 

R
coil

 "  #
0

1/2  $ N
coil

2  "  #
0

1/2
"B

0

1/ 2

Sample Noise :  Noise is white, but differentiation
process due to Faraday's law introduces a multiplication
by #

0
. As a result, the noise variance from the sample

is proportional to #
0

2 .

N
sample

2
 "#

0

2
"  B

0

2
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SNR in MRI

! 

SNR =
signal amplitude

standard deviation of noise
"

B0

2

#B0

1/ 2
+ $B0

2

If coil noise dominates

SNR"B0

7 / 4

If sample noise dominates

SNR"B0
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Random Variables

! 

A random variable X is characterized by its cumulative
distribution function (CDF)

Pr(X " x) = F
X
(x)

The derivative of the CDF is the probability density
function(pdf)

f
X
(x) = dF

X
(x) /dx

The probability that X will take on values between two
limits x

1
 and x

2
 is 

Pr(x
1
" X " x

2
) = F

X
(x

2
) #F

X
(x

1
) = f

X
(x)dx

x1

x2

$
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Mean and Variance

! 

µ
X

= E[X]

= xfX (x)dx"#

#

$

%X

2 =Var[X]

= E[ X "µ
X( )

2
]

= (x "µ
X
)
2
fX (x)dx"#

#

$
= E[X

2
]"µX

2
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Gaussian Random Variable

! 

fX (x) =
1

2"# 2
exp $(x $µ)2 / 2# 2( )( )

µX = µ

#X

2 =# 2
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Independent Random Variables

! 

fX1 ,X 2
(x

1
,x

2
) = fX1

(x
1
) fX 2

(x
2
)

E[X
1
X

2
] = E[X

1
]E[X

2
]

Let Y =  X
1

+ X
2
 then 

µY = E[Y ]

= E[X
1
] + E[X

2
]

= µ
1

+ µ
2

E[Y
2
] = E[X

1

2
] + 2E[X

1
]E[X

2
] + E[X

2

2
] = E[X

1

2
] + 2µ

1
µ

2
+ E[X

2

2
]

"Y

2 = E[Y
2
]#µY

2
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1

2
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1
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2
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2
]#µ

1

2
#µ

2

2
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Signal Averaging

! 

! 

We can improve SNR  by averaging. 

Let 

y1 = y0 + n1

y2 = y0 + n2

The sum of the two measurements is 2y0 + n1 + n2( ).

If the noise in the measurements is independent, then 

the variances sum and the total variance is 2" n

2

SNRTot =
2y0

2" n

= 2SNRoriginal

In general, SNR# Nave # Time
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Noise in k-space

! 

! 

Recall that in MRI we acquire samples in k - space.
The noise in these samples is typically well described
by an iid random process. 
For Cartesian sampling, the noise in the image domain
is then also described by an iid random process.

For each point in k - space, SNR =
S(k)

"
n

 where

S(k) is the signal and  "
n
 is the standard deviation of

each noise sample.
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Noise in image space

! 

! 

Noise  variance per sample in k - space is "
n

2.

Each voxel in image space is obtained from the Fourier transform 

of k - space data. 

Say there are N points in k - space.  The overall noise variance

contribution of these N points is N"
n

2.

If we assume a point object, then all points in k - space contribute 

equally to the signal, so overall signal is NS0. 

Then  overall SNR in image space is 

SNR#
NS0

N"
n

= N
S0

"
n

Therefore, SNR increases as we increase the matrix size. 
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Signal Averaging

! 

! 

We can improve SNR  by averaging in k - space

In general, SNR" N
ave
" Time
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Effect of Readout Window

! 

! 

ADC samples acquired with sampling period "t.

Thermal noise per sample is # n

2
$"f =

1

"t

If we double length of the readout window, the

noise variance per sample decreases by two.

The noise standard deviation decreases by 2, and

the SNR increases by 2.

In general, SNR$ TRead = Nkx
"t
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SNR and Phase Encodes

! 

! 

Assume that spatial resolution is held constant.
What happens if we increase the number of phase

encodes? Recall that "
y

=
1

W
ky

.  Thus, increasing

the number of phase encodes N
PE

, decreases #k
y
 and

increases FOV
y
.

If we double the number of phase encodes, each point
in image space has double the number of k - space lines
contributing to its signal.  The noise variances sum. 

The SNR therefore goes up by 2.

In general SNR$ N
PE
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Overall SNR

! 

! 

SNR"
Signal

#
n

"
$x$y$z

#
n

Putting everything together, we find that

SNR" N
ave
N

x
N

PE
$t$x$y$z

      = Measurement Time %Voxel Volume

In general,

SNR" Measurement Time %Voxel Volume % f (&,T
1
,T

2
)
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Example

! 

Assume same readout gradients for both sequences.
Sampling rate for sequence 2 is twice that of sequence 1.
What are the relative SNRs?

Nishimura 1996
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Example

! 

! 

Sampling rate for sequence 2 is twice as large, so that

bandwidth is doubled.  Therefore noise variance is also doubled

SNR1 =  
256A

256"
n

2
=

256A

"
n

SNR1 =  
512A

512 2"
n

2( )
=

512A

2"
n

=
256A

"
n

Note that sequences have the same resolution, but sequence 2 has

twice the FOV. 


