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Relaxation

An excitation pulse rotates the magnetization vector away from
its equilibrium state (purely longitudinal). The resulting vector
has both longitudinal M, and tranverse M,, components.

Due to thermal interactions, the magnetization will return to its
equilibrium state with characteristic time constants.

T, spin-lattice time constant, return to equilibrium of M,

T, spin-spin time constant, return to equilibrium of M,
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Longitudinal Relaxation

Due to exchange of energy between nuclei and the lattice (thermal
vibrations). Process continues until thermal equilibrium as
determined by Boltzmann statistics is obtained.

The energy AE required for transitions between down to up spins,
increases with field strength, so that T, increases with B.
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Image, caption: Nishimura, Fig. 4.2
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Transverse Relaxation
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Each spin’s local field is affected by the z-component of the field
due to other spins. Thus, the Larmor frequency of each spin will be
slightly different. This leads to a dephasing of the transverse
magnetization, which is characterized by an exponential decay.

T, is largely independent of field. T, is short for low frequency
fluctuations, such as those associated with slowly tumbling
macromolecules.
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NMR Signal

T2 Relaxation

Free Induction Decay (FID)

T, Time
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T2 Relaxation
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T2 Values

Tissue T, (ms) Solids exhibit very
1 g 0 short T, relaxation
gray matter times because there are
white matter 92 many low frequency
muscle 47 inte.raction.s betvyeen
the immobile spins.
fat 85
kidney 58 On the other hand,
liver 43 liquids show relatively
long T, values, because
CSF 4000 the spins are highly

mobile and net fields

Table: adapted from Nishimura, Table 4.2 average out.
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Example

T,-weighted Density-weighted T,-weighted

Questions: How can one achieve T2 weighting? What are the
relative T2’s of the various tissues?
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Example

(a) Four images, all obtained (b) Six images obtained with a common TE=15 ms
with a common TR=5 seconds and TR=500, 1000, 2000, 3000, 4000, 5000 ms
and TE=90, 50, 20, 15 ms (shown (shown in reading order).

in reading order).

Figure 8: Phantom data which illustrates signal intensity and contrast for bottles filled with jello af varying
consistency. Where is 77 long/short? How long, how short? The same for 75? Which bottles might be pure
water? Which jello is most firm? What pictures are the most 71-, 7- and PD-weighted?
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Bloch Equation

Mi+Mj (M, -M,)k

dM
—— =MxyB-— -
a " T, I,
Precession
Transverse Longitudinal
Relaxation Relaxation

i, j, k are unit vectors in the x,y,z directions.
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Free precession about static field

B
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Free precession about static field

dM,/dt| [B.M,-BM.
dM,/dt|=y|B.M_ -B.M,
dM_/dt| |B,M, -BM,
[0 B, -BJM

X

-y-B. 0 B, |M

x y

B, -B, 0 |M.

y x
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Precession
dM | dt 0 B, O[M,
dM, /dt|=y|-B, 0 0O|M,
dM./dt 0 0 ofm,

Useful to define M =M + jM, V M
y

dM/d1 = d] di(M, +iM.) M
=—jyB,M

X

Solution is a time-varying phasor
M(t) = M(0)e ™" = M(0)e ™

Question: which way does this rotate with time?
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Matrix Form with B=B,

dm jdi] [-UT, vB, 0 [M] [ 0
am, Jdt|=|-yB, UT, 0 M, |+ 0

y

dam_jdi| | 0 0 -UuT|M.| |M,/T;
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Z-component solution

M_ ()= My+(M_(0)- My)e™"'"

Saturation Recovery

If M_(0) =0 then M_(t) = M,(1-¢"'™")

Inversion Recovery

If M_(0) =-M, then M_(t) = M,(1-2¢"'™)
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Transverse Component
M=M, +jM,

aM/dt=df (M, +iM,) "
=—jlo,+UT)M

= 0|

M(1) = M(0)e /™"e™"'"
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Summary

1) Longitudinal component recovers exponentially.

2) Transverse component precesses and decays exponentially.

Source: http://mrsrl.stanford.edu/~brian/mri-movies/
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Summary

1) Longitudinal component recovers exponentially.

2) Transverse component precesses and decays exponentially.

Fact: Can show that T,< T, in order for M) =M,
Physically, the mechanisms that give rise to T, relaxation

also contribute to transverse T, relaxation.
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Gradients

Spins precess at the Larmor frequency, which is
proportional to the local magnetic field. In a constant
magnetic field B,=B,,, all the spins precess at the same
frequency (ignoring chemical shift).

Gradient coils are used to add a spatial variation to B,
such that B (x,y,z) = By+A B,(x,y,z) . Thus, spins at
different physical locations will precess at different
frequencies.
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Simplified Drawing of Basic Instrumentation.
Body lies on table encompassed by
coils for static field B,
gradient fields (two of three shown),

nd radiofrequency field B,.
and g y 1 Image, caption: copyright Nishimura, Fig. 3.15
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Imaging: localizing the NMR signal

The local precession frequency
can be changed in a position-
dependent way by applying linear
field gradients

Resonant Frequency:

v(X) = yBy+yAB(x)

RF and Gradient Coils
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Credit: R. Buxton

Interpretation

Gradient Fields
B.(x,y,z) =B, + 9B, X+ 9B, v+ (9—Bzz
ox 0z
, =B, +Gx+Gy+Gz
L.,
f
i il
Tt f |
trtt T]
G=&BZ>O Gy_a"Bz>0
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AB,(x)=G,x

Spins Precess ~ Spins Precess at yB,,
at YB,- vG,x
(slower)
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Spins Precess at
at yBy+ yG,x
(faster)




Rotating Frame of Reference

Reference everything to the magnetic field at isocenter.
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Spins

There is nothing that nuclear spins
will not do for you, as long as you
treat them as human beings.
Erwin Hahn
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Imaginary Phasors

——t—_ e’ =cosf+ jsinf
sinf
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Phasor Diagram

> Imaginar:
G(k,) = [ g(x)exp(-j2mk,x)dx gmany
0=-21k x \
i Real
\Z ) 9=-27kx
k.=1x=0 x=1/4 x=1/2 x=3/2
2mk x =0 2mk, x =2 27k, x =1 2k x =37 /4

6=0
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Interpretation

-2AX -Ax 0 Ax 2AX
eXP(—.iZH(S%)x)
exP( ! 2”(8;) )
) |
eXP( jZn(gix) ) —+ - ,v
-
Slower AB,(x)=G,x Faster
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Hanson 2009

TT Liu, BE280A, UCSD Fall 2009

(a) (b)
k,=0; k,=0 k,=0; k,=0
Fig 3.12 from Nishimura
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Phase with time-varying gradient

Hanson
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Spin-Warp

Gx(t)
—‘ kY
G,(t)
] ke
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k-space

Image space k-space

—y
Fourier Transform
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2 k-space

RF i Spin—WarpIPulse Sequence
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