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MRI Lecture 6

Moving Spins

So far we have assumed that the spins are not moving (aside
from thermal motion giving rise to relaxation), and contrast
has been based upon T, T,, and proton density. We were able
to achieve different contrasts by adjusting the appropriate
pulse sequence parameters.

Biological samples are filled with moving spins, and we can
also use MRI to image the movement. Examples: blood flow,
diffusion of water in the white matter tracts. In addition, we
can also sometimes induce motion into the object to image its
mechanical properties, e.g. imaging of stress and strain with
MR elastography.
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Phase of Moving Spin

Consider motion along the x-axis
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Phase Contrast Angiography (PCA)
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PCA example
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Aliasing in PCA

Define VENC as the velocity at at which the phase is
180 degrees.
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Aliasing Solutions
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Readout Gradient Flow Artifacts

During readout moving spins
within the object will
accumulate phase that is in
-G, addition to the phase used for
imaging. This leads to

Gy

T 2T 3T 1) Net phase at echo time TE
=2T.

2) An apparent shift in
position of the object.

3) Blurring of the object due
to a quadratic phase term.




Flow Artifacts

Plug Flow

All moving spins in the
voxel experience the
same phase shift at
echo time.
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Laminar Flow

Spins have different
phase shifts at echo
time. The dephasing
causes the cancelation
and signal dropout.
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Flow Compensation

Readout Gradient
/ Echo Time TE
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At TE both the first and second
order moments are zero, so both
stationary and moving spins have
zero net phase.
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Relaxed spins flowing in

Saturated spins

Time of Flight Angiography




Cerebral Blood Flow (CBF)
CBF = Perfusion

= Rate of delivery of arterial blood to a
capillary bed in tissue.

Units: (ml of Blood)

(100 grams of tissue)(minute)

Typical value is 60 mi(100g-min) or
60 mt(100 ml-min) = 0.01 s*!, assuming
average density of brain equals 1 gm/ml

High CBF

m; Low CBF

Time

BRAIN FROZEN

HEAD FROZEN

Bereczki et al 1992

Arterial spin labeling (ASL)
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ASL Signal Equation
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A 1s the effective area of the arterial
bolus. It depends on both physiology and
pulse sequence parameters.
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Diffusion

100 steps
2D random walk B

N random steps of length d

In brain:
<Ax?>= Nd? = 2DT D= D0 s
] o or T= msec,
D = diffusivity Ax=15u

Credit: Larry Frank

Diffusing Spins
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Diffusivity

Diffusion Weighted Images

T2 weighted Diffusion Weighted Angiogram

After a stroke, normal water movement is restricted in the
region of damage. Diffusivity decreases, so the signal intensity
increases.

http://lehighmri.com/cases/dwi/patient-b.html




Restricted Diffusion

D depends on direction

SN
Diffusion tensor:
y 3 values of D
X 3 angles

Credit: Larry Frank

Diffusion Imaging Example

IRM 40, 119 (1998)

Q-ball imaging

Tuch et al, Neuron 2003

Fiber tract mapping of neural connectivity

Courtesy of L. Frank




fMRI

. . Functional MRI (fMRI)
MRI studies brain anatomy. studies brain function.

c.uwo.ca/Jody_y htm

fMRI Setup

Video projector

frequency.
coil

Prism glasses

Headphones __ .

Button
response
box

Amplifiers control
magnetic field in
/ Stimulus control tromets
Radio reqioncy | computer control computer
amplifier

http://s uwo.ca/Jody_web/fmri ies.htm

fMRI Acquisition

High spatial resolution High temporal resolution

MP-RAGE EPI
Voxel volume: 1 mm?3 Voxel volume: 45 mm3

Imaging time: 6 min Imaging time: 60 msec
Buxton 2002

History of Functional MRI

visual stimulation

light light > 105 TE=8msec

TE= 40 msec

3
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Finger Tapping Task

leftmotoréx

Functional MRI

-amplitude, spatially correlated fluctuations in BOLD fMRI
signals during extended rest and early sleep stages
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Acute effects of alcohol on neural correlates of
episodic memory encoding
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Imaging obesity: TMRI, food reward, and feeding.
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Marketing actions can modulate neural
representations of experienced pleasantness

. Baba shiv!,

Neural Activation Patterns of Méthamphetamine-
Dependent Subjects During Decision Making
Predict Relaps

Mapping a multidimensional emotion in response to television commercials

Jon . Morris ! 2", Nelson INglanr 23, Feng Shen 1, Jorge Viliegas 1, Paul Wright 23, Guojun He 23, Yijun Liu 23"
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fMRI—Subcortical and cortical arousal during erotic picture viewing Entire Lifetime in Healthy Aged Subjects:
An fMRI Study
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Michael Rotte, Hans Jochen Heinze," Bernhard Bogerts," and Georg Northoff*

Cabernet and fMRI
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Marketing actions can modulate neural
representations of experienced pleasantness

Hilke Plassmann®, John O'Doherty*, Baba Shiv*, and Antonio Rangel**

*Division of the Humanities and Soclal ciences, Californa Institute of Technology, MC 22877, Pasadena, CA 91125; and fStanford Graduate School
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ot significant

$5 46 S0 S® 85 rewn

RINSE

S ss S0 %0 S e

5.
B wTEusTENsTY g4
. 2 N
Fig. 1. Experimental design and behavioral results. (A) Time course for a
typical trial. (8) Repor i i (C)Reported

pleasantness for the wines during the cued price trials. (D) Taste intensity
ratings for icetrials. (E) Repor
the wines obtained during a postexperimental session without price cues.
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Fig.2. The effect of price on each wine. (4) Wine 1: averaged time courses
in the medial OFC voxels shown in B (error bars denote standard errors). (8)
Wine 1: activity in the mOFC was higher for the high- ($45) than the low-price
condition ($5). Activation maps are shown at a threshold of P < 0.001 uncor-
rected and with an extend threshold of five voxels. (C) Wine 1: activity in the
VMPFC was also selected by the same contrast. (D) Wine 2: averaged time
courses in the medial OFC voxels shown in E. (€) Wine 2: activity in the mOFC
‘was higher for the high- ($90) than for the low-price condition ($10). (F) Wine
2: activity in the vmPFC was higher for the same contrast.

Hemoglobin and Field Inhomogeneities
HEMOGLOBIN Oxygen binds to the iron atoms to
: ) form oxyhemoglobin HbO,

- Release of O, to tissue results in
< deoxyhemoglobin dHBO,

Field Maps
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Signal Decay
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Blood Flow and Oxygen Metabolism

Cerebral Blood Flow (CBF) measures delivery of blood to

brain tissue (units of ml/(g-min))

Cerebral Metabolic Rate of (CMRO,) is the rate of oxygen

consumption (units of umol/(g-min))
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EPI Scans
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Field Inhomogeneities

EPI Distortions and Signal Dropouts

Credit: R. Buxton
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Fig. 129
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Nyquist Ghosts




Timeline

Michael Crichton, 1999

“Most people”, Gordon said, “don’t realize that the
ordinary hospital MRI works by changing the quantum
state of atoms in your body ... But the ordinary MRI does
this with a very powerful magnetic field - say 1.5 tesla,
about twenty-five thousand times as strong as the earth’s
magnetic field. We don’t need that. We use
Superconducting QUantum Interference Devices, or
SQUIDs, that are so sensitive they can measure resonance
just from the earth’s magnetic field. We don’t have any
magnets in there”.

J. Clarke, UC Berkeley
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Encoding

Detection

Seeley et al, IMR 2004
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Seeley et al, IMR 2004

Compressed Sensing

Slide Credit: http://www.stanford.edu/~mlustig/

Compressed Sensing

8-
Minimum - norm

conventional linear
, reconstruction
Min. Total Variation
(Tv)

A convex non-linear
reconstruction

Slide Credit: http://www.stanford.edu/~mlustig/
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