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Scanner Generations

Figure 5.10: Subsequent scanner generations: (a) first generation, (b) second generation, (c) third
generation and (d) fourth generation CT scanner.
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Single vs. Multi-slice

(a)

Figure 5.22: (a) Single-slice CT versus (b) multi-slice CT: a multi-slice CT scanner can acquire
four slices simultaneously by using four adjacent detector arrays (Reprinted with permission of

RSNA).
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Scanner Generations

PR A7 g
Source Detector | Source-Detector
Generation Source Collimation Detector Collimation | Movement | Advantages | Disadvantages
G Single x-ray | Pencil beam | Single None Move lincarly | Scattered Slow
tube and rotate in | energy is
unison undetected
26 Single x-ray | Fan beam, not | Multiple Collimated to_| Move lincarly | Faster than 1G | Lower
enough to source and rotate in efficiency and
cover FOV direction unison larger noise
because of the
collimation in
detectors
3G Single x-ray | Fan beam, Many Collimated to | Rotate in Faster than ore
tbe enough to source synchrony 2G, continuous | expensive than
cover FOV direction rotation using | 2G, low
aslip ring efficiency
iG Single x-ray | Fan beam Stationary ring | Cannot Detectors are | Higher High scattering,
tube covers FOV | of detectors | collimate fixed, source | efficiency than | since detectors
detectors rotates 3G are not
collimated
SG(EBCT) | Many tungsten | Fan beam Stationary ring | Cannot No moving Extremely fast, | High cost,
anodes in of detectors | collimate parts capable of difficult to
single large detectors stop-action | calibrate
tube imaging of
beating heart
6G (Spiral CT) | 3GA4G 3GHAG 3GAG 3GHG 3GAGplus | Fast 3D images | A bit more
linear patient expensive
table motion
7G (Maultislice | Single x-ray | Conc beam | Multiple arrays | Collimated to | 3GH4G/6G Fast 3D images | Expensive
cT) tube of detectors | source motion
direction

Prince and Links 2005
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1G vs. 2G scanner

Example 6.1 from Prince and Links.

Compare 1G vs. 2G scanner whose source - detector apparatus can move linearly

at speed of 1 m/sec; FOV 0.5m; 360 projections over 180 degrees; 0.5 s for apparatus

to rotate one angular increment, regardless of angle.

Question: Scan time for 1 G scanner? Scan time for 2G scanner with 9 detectors space 0.5
degrees apart?

Answer :

1G scanner:  0.5m/(1m/s) = 0.5s per projection.
360%0.5 = 180s scan time
360*0.5 =180s for rotation of apparatus.
Total time = 360 s or 6 minutes.

2G scanner :  Required angular resolution is 180/360 = 0.5 degrees - - agrees with spacing.
360/9 = 40 rotations required.
40*0.5 = 20s for scanning
40#0.5 =20s for rotations.
Total time = 40s.
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3@, 6@, and 7G scanners

3G scanner : Typical scanner acquires 1000 projections with fanbeam angle
of 30 to 60 degrees; 500 to 700 detectors; 1 to 20 seconds.

6G : Spiral/Helical CT
60 cm torso scan: 30s.
24 cm lung scan: 12s

15 cm angio: 30s

7G : Multislice CT

64 or more parallel 1D projections.
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Figure 5.20: (a-b) The basic internal geometry of a third generation spiral CT scanner. (c) X-ray
tube with adjustable collimating split. (d) Detector array with post-patient collimator.
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Detectors

X-rays . lx-. ays; X-rays

Figure 6.7

(a) Solid-state detectors,

Scintillator Scintillator

(b) xenon gas detectors, and  crystals crystals Photodiodes
(c) multiple (solid-state) Cathode
detector array. (a) (b) (c)
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CT Line Integral
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CT Number CT Disnlav

CT_number = = Poarer x 1000
u

1 water

Measured in Hounsfield Units (HU)

Air: -1000 HU

Soft Tissue: -100 to 60 HU

Cortical Bones: 250 to 1000 HU

Metal and Contrast Agents: > 2000 HU

(b)

Figure 5.4: CT-image of the chest with different windowy/level settings:(a) for the lungs (window
1500 and level -500) and (b) for the soft tissues (window 350 and level 50).
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4 equations, 4 unknowns.

4 equations, 4 unknowns.
Are these the correct equations to use?

Are these the correct equations to use?

TT Liu, BE280A, UCSD Fall 2010 TT Liu, BE280A, UCSD Fall 2010




Direct Inverse Approach
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4 equations, 4 unknowns. These are linearly independent now.
In general for a NxN image, N?> unknowns, N? equations.

This requires the inversion of a N2xN? matrix

For a high-resolution 512x512 image, N?>=262144 equations.
Requires inversion of a 262144x262144 matrix!

Inversion process sensitive to measurement errors.
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Iterative Inverse Approach

Algebraic Reconstruction Technique (ART)
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Projections

uxy)

Suetens 2002

[ cosf sinf x]
-sinf cos6| y]

'x] [cos 6 —sinf|r]

sinf@ cosf s

I(r,0)=1, exp(—fm ;,L(x,y)a's)

=1, exp(—fl_ ) u(rcosf — ssin@,rsinf + scos B)ds)

TT Liu, BE280A, UCSD Fall 2010

Suetens 2002

lo®

X0

TT Liu, BE280A, UCSD Fall 2010

Projections
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Radon Transform
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Example

1 2 2<1
f(x,y>={ Ty

0 otherwise

g(L.0=0)= [ f(Ly)dy
Wi

= [
_J2-2 st
0 otherwise

TT Liu, BE280A, UCSD Fall 2010

TT Liu, BE280A, UCSD Fall

Sinogram
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¥ Backprojection

X b(xey) = p(LO=0)A8

= p(x,,0)A0
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b, (x,y) = g(xcos0 + ysin0,0)A0
b(x,y) = B{g(1.6)}
- fo g(xcos + ysinb,0)do
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Backprojection
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Backprojection

B{p(1.6)} = [ p(xcos6 + ysin6,6)d6
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