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A Traditional Definition of a BCI 

A brain–computer interface (BCI), sometimes called a 
direct neural interface or a brain–machine interface, is a 
direct communication pathway between a brain and an external 
device. BCIs are often aimed at assisting, augmenting or 
repairing human cognitive or sensory-motor functions.  

Wolpaw et al. 2002. 



Criteria for BCIs 

•  Direct: The system must rely on direct measures of 
brain activity.  

•  Real-time: real-time refers to a maximum of a one 
minute delay between the user’s formation of a relevant 
message or command and resulting feedback.  

•  Feedback: BCIs must present real-time feedback to the 
user. That is, the system must act on the user’s intent so 
that the user can know whether s/he successfully 
conveyed the desired message or command. 

•  Intentional: The user must perform some voluntary, 
intentional, goal-directed mental activity each time s/he 
wishes to convey information. This criterion excludes all 
passive BCIs. 



Our Working Definition of a BCI 

A system which takes a biosignal measured from a person 
and predicts (in real time / on a single-trial basis) some 
abstract aspect of the person's neurological state, cognitive 
state, attention, or intention. 
 



Types of BCIs 

•  Active BCI (BMI): a BCI derives its outputs from brain 
activity which is directly consciously controlled by the 
user, independently from external events, for controlling 
an application. 

•  Reactive BCI: a BCI derives its outputs fron brain 
activity arising in reaction to external stimulation, which 
is indirectly modulated by the users for controlling an 
application. 

•  Passive or Affective BCI (BMI) derives its 
outputs from spontaneous brain activity without the 
purpose of voluntary control. 
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Bio-signals for BCIs 

•  EEG or MEG 
 

MINDO 

Cognionics, Inc 



Bio-signals for BCIs 

•  Functional Near-Infrared Spectroscopy (fNIRS)  
 



Bio-signals for BCIs 

•  fMRI 

 



Invasive Bio-Signals for BCIs 

•  Microarrays, ECoG, Neurochips, etc. 

 
Utah Electrode  



Non-Brain Signals for BCIs 

•  Electromyography (EMG), Electrocardiography 
(ECG), Electrooculography (EOG)  

Microsoft, Inc 



Non-Brain Signals for BCIs 

•  Motion capture, eye-tracking 
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Typical EEG Features Used in BCIs 

•  P300 event-related potential BCI. (e.g. Donchin et al, 
IEEE Trans Rehabil Eng 2000.) 

•  Sensorimotor rhythm BCI.  

•  Steady-state Visual Evoked Potential. 

•  Time-frequency EEG features 



P300 BCIs 

•  Farwell and Donchin 1988 

•  P300 Speller  



Sensorimotor Rhythm BCI  !

•  Motor imagery BCI 

Wang et al., NE Workshop 11, Hsinchu, Taiwan 
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Mu BCIs 



Reactive (SSVEP) BCIs 

� Photic driving 

Stimulus >6Hz 
t t 

Steady-state VEP 



SSVEP BCIs 
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From C. Kothe, BCILAB Workshop Tutorials 
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From C. Kothe, BCILAB 
Workshop Tutorials 
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Major Components of a BCI 
1.  Signal processing: transforms one signal to another 

•  From the point of view of Signal Processing, a BCI 
transduces the input signal !(") (for example EEG) into 
a control signal #(")  

•  BCI components can be conveniently described as 
filters. 

•  Relevant filter classes: Spatial Filters, Temporal Filters, 
Spectral Filters, Spatio-Temporal Filters, etc. 

 

From C. Kothe, BCILAB Workshop Tutorials 
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Major Components of a BCI 
2.  Feature Extraction:  

Off-the-shelf machine learning methods often do not work 
very well when applied to raw signal segments of the 
calibration recording  
§  too high-dimensional (too many parameters to fit)  
§  too complex structure to be captured (too much modeling 

freedom, requires domain-specific assumptions)  

Typical Solution: Introduce additional mapping (called 
“feature extraction”) from raw signal segments onto feature 
vectors which extracts the key features of a raw 
observations.  
§  output is usually of lower dimensionality  
§  hopefully statistically “better” distributed (easier to handle 

for machine learning).  

 

Adapted From C. Kothe, BCILAB Workshop Tutorials 



Major Components of a BCI 
3.  Machine Learning 

Most methods conform to a common framework of a 
training function and a prediction function  
 
 
 
Typical Solution: Introduce additional mapping (called 
“feature extraction”) from raw signal segments onto  
 

 

From C. Kothe, BCILAB Workshop Tutorials 



Types of Machine-learning Algorithms 

•  Supervised Learning: given a set of (input,output) 
pairs as training data, learn a parametric (or “non-
parametric”) model M that encodes the mapping from 
input to output  

•  Unsupervised Learning: given a set of training 
examples, learn the structure in the input space (e.g. 
clusters, manifolds, probability density)  

•  Semi-Supervised Learning: Some training examples 
have labels, others do not  
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LDA generates parameters of a linear mapping: y=θx-b, 
For classification, the mapping is non-linear: y = sign(θx-b). 
 

Adapted from C. Kothe, BCILAB Workshop Tutorials 



From C. Kothe, BCILAB Workshop Tutorials 
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Evaluating the Efficacy of BCIs 

1.  Both calibration data and test data are available 
–  Estimate model parameters (for filters, features, ML algorithm)  
–  Apply the model to new data (online / single-trial)  
–  Measure prediction performance or loss between a vector of 

predictions $ and a vector of targets % using, for instance, 

Adapted from C. Kothe, BCILAB Workshop Tutorials 



Evaluating the Efficacy of BCIs 

2.  Test (future) data are not available 
–  Split one data set repeatedly into training/test blocks 

systematically, a.k.a. cross-validation  
–  Time series data: Prefer block-wise cross-validation over 

randomized  
–  Consideration: Since neighboring trials are more closely related 

than training and future online data, leave a margin of several 
trials/seconds between training and test  

–  Standard splitting schemes: 5x, 10x  

Adapted from C. Kothe, BCILAB Workshop Tutorials 



Evaluating the Efficacy of BCIs 

3.  Time (speed) matters 
–  Information Transfer rate (ITR) 
 

Wolpaw et al. “Brain–computer interface technology: A review of the first 
international meeting,” IEEE Trans. Rehab. Eng., 8: 164–73, 2000. 

N  is the number of different types of mental tasks and the P  
the accuracy of classification. 
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Application Areas and Examples  

•  Communication tool for severe disabilities such 
as tetraplegia, locked-in syndrome  



Application Areas and Examples  

•  Prosthetic control for severe disabilities such as 
tetraplegia, locked-in syndrome  

 



Application Areas and Examples  

•  Neurorehabilitation after neurological diseases or injuries  

Gao, Wang et al. 



Application Areas and Examples  

•  Entertainment and gaming 



Application Areas and Examples  

•  Lie detection, Brain Fingerprinting, Trust assessment  



Application Areas and Examples  

•  Health such as sleep-stage or mood monitoring  
 



Application Areas and Examples  

•  Cognitive-state, such as workload/fatigue/
alertness, monitoring in pilots, air traffic 
controllers, plant operators  

 

Lin et al, 2008. 



Considerations  in BCIs 

•  Ethical issues 
•  Acceptance by patient groups, etc. 
•  Difficult to prove their advantages over surrogate methods 



Challenges in BCIs 

•  Signal-to-noise ratio of EEG is extremely low, especially in 
real-world environments, 

•  EEG signals are mathematically complicated to handle since 
all sensors record almost the same signal.  

•  Brain dynamics are very complex 
–  Folding of cortex differs between any two persons 
–  Relevant functional map differs across individuals  
–  Sensor locations differ across recording sessions  
–  Brain dynamics are non-stationary at all time scales  
–  Brain dynamics are very variable across subjects, tasks, experimental 

conditions, etc. 
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