BIOE =
280A UCSD

Principles and Applications of

Brain-Computer Interfaces

Tzyy-Ping Jung

Center for Advanced Neurological Engineering and
Swartz Center for Computational Neuroscience and
University of California San Diego, USA
and
Department of Computer Science
National Chiao-Tung University, Hsinchu, Taiwan



BIOE .
Outline

e Working definitions of BClIs

e Types of BCIs

e Bio-signals for BCIs

e Typical EEG features used in BCIs
e Available tools

e Major components in BCIs

e Evaluations of BCI performance

e Application areas and examples

e Challenges in BCIs



A Traditional Definition of a BCI |[<T
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A brain—computer interface (BCI), sometimes called a
direct neural interface or a brain—machine interface, is a
direct communication pathway between a brain and an external
device. BClIs are often aimed at assisting, augmenting or
repairing human cognitive or sensory-motor functions.
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Direct: The system must rely on direct measures of
brain activity.

Real-time: real-time refers to a maximum of a one
minute delay between the user’s formation of a relevant
message or command and resulting feedback.

Feedback: BCIs must present real-time feedback to the
user. That is, the system must act on the user’s intent so
that the user can know whether s/he successfully
conveyed the desired message or command.

Intentional: The user must perform some voluntary,
intentional, goal-directed mental activity each time s/he
wishes to convey information. This criterion excludes all
passive BCIs.



Our Working Definition of a BCI |[<
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A system which takes a biosignal measured from a person
and predicts (in real time / on a single-trial basis) some
abstract aspect of the person's neurological state, cognitive
state, attention, or intention.

Biosignal State Predictions
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e Active BCI (BMI): a BCI derives its outputs from brain
activity which is directly consciously controlled by the
user, independently from external events, for controlling
an application.

e Reactive BCI: a BCI derives its outputs fron brain
activity arising in reaction to external stimulation, which
is indirectly modulated by the users for controlling an
application.

o Passive or Affective BCI (BMI) derives its
outputs from spontaneous brain activity without the
purpose of voluntary control.
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e EEG or MEG

NIMH

Cognionics, Inc
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o Functional Near-Infrared Spectroscopy (fNIRS)

Seraglia et al., 2011



Bio-signals for BCIs

e fMRI

Real-Time fMRI
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http://www.brainmapping.org/MarkCohen/research/RTfMRI.html




29  Invasive Bio-Signals for BCIs =~
280A UCSD

e Microarrays, ECoG, Neurochips, etc.

Utah Electrode
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e Electromyography (EMG), Electrocardiography
(ECG), Electrooculography (EOG)

Microsoft, Inc
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gégf\ Non-Brain Signals for BCIs =

e Motion capture, eye-tracking

SCCN MoBI Lab SensoMotric Instruments
(EEG: Emotiv)
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e P300 event-related potential BCI. (e.g. Donchin et al,
IEEE Trans Rehabil Eng 2000.)

e Sensorimotor rhythm BCI.
e Steady-state Visual Evoked Potential.
e Time-frequency EEG features



P300 BClIs

 Farwell and Donchin 1988
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Reactive (SSVEP) BClIs
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BioSig B

Developed at TU Graz since at least 2002

One of the oldest open-source BCl toolboxes, for
MATLAB/Octave (cross-platform)

Large amount of functionality from statistics and time-
series analysis: Adaptive Autoregression (AAR), Blind
Source Separation (BSS), Common Spatial Patterns
(CSP), Classifiers (LDA, SVMs, ...), Cross-Validation

Offline analysis only -- no real-time hardware or
computation support

Not easy to use (no GUI, fairly complicated code, not
very modular...)

From C. Kothe, BCILAB Workshop Tutorials
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BCI12000

Developed at Wadsworth Center since 2000

Large, modularized C++ system, primarily aimed at
real-time acquisition, signal processing, stimulus
presentation, experiment control, deployment; robust,
“enterprise-grade” implementation (though Windows
only)

Supports a wide range of acquisition hardware
(currently 19 systems)

Solid documentation, workshops, book, big community

Lack of advanced signal processing and machine
learning algorithms (tough extensions and in-house
versions available)

From C. Kothe, BCILAB Workshop Tutorials
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OpenViBE -

Developed at INRIA, relatively young project

Implemented in modular C++, focusing on visual
programming and dataflow programming

Very user-friendly design, interface and documentation

Focus on basic signal processing building blocks,
weaker support for complex information flows
(machine learning, adaptive signal processing, ...)

Relatively hard to extend due to complex framework

Supports a broad range of acquisition hardware (15
systems), runs on Windows and Linux

From C. Kothe, BCILAB Workshop Tutorials
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g.BSanalyze

Commercial System developed by g.Tec
MATLAB/Simulink-based framework

Broad collection of turnkey algorithmes,
evaluation methods, etc.

Extensive, high-quality graphical user interface
Primarily supporting in-house amplifiers

From C. Kothe, BCILAB Workshop Tutorials



BCI\LAB
BCILAB Sap-AR

Developed since 2010 at Swartz Center for
Computational Neuroscience, UCSD (precursors
dating back to 2006)

MATLAB-based, cross-platform, offline and online
analysis; stand-alone versions available

Largest collection of BCl algorithms from signal
processing, machine learning, etc.

Relatively little native support for acquisition
systems (5), but can tie into real-time
experimentation frameworks (BCI2000, LSL)

From C. Kothe, BCILAB Workshop Tutorials
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Other Packages

* XBCl: New C++ framework focused on online operation,
GUI-centric, cross-platform

* BF++: Mature BCl framework (developed since 2000),
however not very well known — mostly for offline
analysis & modeling with UML and XML

* TOBI: Protocol suite for BCl interoperability and data
acquisition

* PyFF: Python-based BCI stimulus presentation system

* BBCI: In-house MATLAB-based system developed at TU
Berlin; very comprehensive, potentially for licensing

* BCI++: Relatively new C++ system, focused on human-
computer interaction and virtual reality (still growing)

From C. Kothe, BCILAB Workshop Tutorials
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Major Components of a BCI

1. Signal processing: transforms one signal to another

e From the point of view of Signal Processing, a BCI
transduces the input signal x(n) (for example EEG) into
a control signal y(n)

e BCI components can be conveniently described as
filters.

o Relevant filter classes: Spatial Filters, Temporal Filters,
Spectral Filters, Spatio-Temporal Filters, etc.

Raw EEG Filtered EEG Control Signal
Al At Bandpass /\N\/\\) :
e  Filter (2-30H2) Hnear Map S VA

From C. Kothe, BCILAB Workshop Tutorials



Spatial Filters vs.
Forward Projections
* Spatial filters are not the same as forward

projection maps of some source signal —they
are the inverse operation

S(n) =WXn) X(n) = W-1S(n)
From C. Kothe, BCILAB Workshop Tutorials



Temporal Filters

Transform a multi-channel signal X (n) such
that each channel y;(n) in Y(n) depends only
on the channel x;(n)

They are conceptually orthogonal to spatial
filters

Examples include time windowing, wavelet
transform, etc.

Special case: Spectral filters

From C. Kothe, BCILAB Workshop Tutorials



Example Temporal Filters

* Moving Average:

T = yi(n) = —Yiox; (n—k)

— Effectively a smoothing (low-pass) operator
— In fact a simple example of a spectral filter

Moving
Average

From C. Kothe, BCILAB Workshop Tutorials



Spectral Filters

* Examples include: High-pass, Low-pass, Band-
pass filters, Notch filters

* Their main utility in BCls is to isolate
oscillations or ERPs of interest

Bandpass

Filter (2-30Hz)

From C. Kothe, BCILAB Workshop Tutorials



Major Components of a BCI

2. Feature Extraction:

Off-the-shelf machine learning methods often do not work

very well when applied to raw signal segments of the
calibration recording

= too high-dimensional (too many parameters to fit)

= too complex structure to be captured (too much modeling
freedom, requires domain-specific assumptions)

Typical Solution: Introduce additional mapping (called

“feature extraction”) from raw signal segments onto feature

vectors which extracts the key features of a raw
observations.

= output is usually of lower dimensionality

= hopefully statistically “better” distributed (easier to handle
for machine learning).

Adapted From C. Kothe, BCILAB Workshop Tutorials



Major Components of a BCI

3. Machine Learning

Most methods conform to a common framework of a
training function and a prediction function

/ Machine Learning Method \
Data » Training »Model New Data » Prediction » Labels
Labels » function Model » function

\ J

From C. Kothe, BCILAB Workshop Tutorials



Je/3 Types of Machine-learning Algorithms |<=
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e Supervised Learning: given a set of (input,output)
pairs as training data, learn a parametric (or “non-
parametric”) model M that encodes the mapping from
iInput to output

e Unsupervised Learning: given a set of training
examples, learn the structure in the input space (e.q.
clusters, manifolds, probability density)

e Semi-Supervised Learning: Some training examples
have labels, others do not



Example Calibration Problem

* Task: A person is presented with a sequence of
300 images (one ever 2 seconds). Half of the
images are exciting, the other half are not.

One channel of EEG (at Cz location) is recorded.

Question: How to design a BCI that can
determine whether a person is shown an exciting
or a non-exciting image?

Approach: For each trial k, cut out an epoch X, of
1s length, extract a short vector of features f,,
and assign a label y, in {E,NE}. Use machine
learning to find an optimal statistical mapping
from f_onto y,.

From C. Kothe, BCILAB Workshop Tutorials



Extracting Features of a Peak

* A supposed characteristic peak in a time
window (relative to an event) could be

characterized by three parameters:
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From C. Kothe, BCILAB Workshop Tutorials



Resulting Feature Space

* Plotting the 3-element feature vectors for all
exciting trials in red, and non-exciting trials in
green, we obtain two distributions in a 3d
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From C. Kothe, BCILAB Workshop Tutorials



ML with Feature Extraction

* Including the feature extraction, the analysis process
is as follows:
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Using Machine Learning

* The feature vectors are passed on to a machine
learning function (e.g., Linear Discriminant Analysis)

* ...which determines a parametric predictive mapping

e.g., LDA
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LDA generates parameters of a linear mapping: y= €& x-b,
For classification, the mapping is non-linear: y = sign( 6 x-b).

Adapted from C. Kothe, BCILAB Workshop Tutorials



LDA In a Nutshell

* Given trial segments x;, (in vector form) in C; and C,,

1
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23 Evaluating the Efficacy of BCIs E
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1. Both calibration data and test data are available
— Estimate model parameters (for filters, features, ML algorithm)
— Apply the model to new data (online / single-trial)

— Measure prediction performance or loss between a vector of
predictions p and a vector of targets t using, for instance,
* Mean-Square Error:

— Luse(P,t) =~ T(Pic — ti)?

* Mis-Classification Rate:

1 1, *t
—Lycr(p,t) = ;Zk{ ot

o @

Calibration data Future data...

Adapted from C. Kothe, BCILAB Workshop Tutorials
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2. Test (future) data are not available

— Split one data set repeatedly into training/test blocks
systematically, a.k.a. cross-validation

— Time series data: Prefer block-wise cross-validation over
randomized

— Consideration: Since neighboring trials are more closely related
than training and future online data, leave a margin of several
trials/seconds between training and test

— Standard splitting schemes: 5x, 10x

Training
part

Adapted from C. Kothe, BCILAB Workshop Tutorials



29 Evaluating the Efficacy of BCIs E
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3. Time (speed) matters
— Information Transfer rate (ITR)

1—p]
N —1

N is the number of different types of mental tasks and the P
the accuracy of classification.

B; =logy, N + plog, p + (1 — p) log, [

Wolpaw et al. “"Brain—computer interface technology: A review of the first
international meeting,” IEEE Trans. Rehab. Eng., 8: 164—-73, 2000.



BIOE -
Outline

e Working definitions of BCIs

e Types of BCIs

e Bio-signals for BCIs

e Typical EEG features used in BCIs
e Major components in BCIs

o Evaluations of BCI performance

e Available tools

e Application areas and examples

e Challenges in BCIs



#ved Application Areas and Examples b

280A

e Communication tool for severe disabilities such
as tetraplegia, locked-in syndrome

P300 Speller
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e Prosthetic control for severe disabilities such as
tetraplegia, locked-in syndrome

KU Leuven Brain2Robot
(Fraunhofer FIRST)
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e Neurorehabilitation after neurological diseases or injuries

Gao, Wang et al.
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e Entertainment and gaming
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o Lie detection, Brain Fingerprinting, Trust assessment

Farwell et al. 2000
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e Health such as sleep-stage or mood monitoring

NEUR@VIGIL

iBrain

Neurosky Mindset



#ved Application Areas and Examples eeb
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e Cognitive-state, such as workload/fatigue/
alertness, monitoring in pilots, air traffic
controllers{ plant operators

Pupil Diar

Efﬁ:" Blink
Frequenc

Cortisol L
n Saliva

R

Haufe et al., 2011
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gégf\ Considerations in BCIs =

e Ethical issues
e Acceptance by patient groups, etc.
o Difficult to prove their advantages over surrogate methods



Challenges in BCIs =
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e Signal-to-noise ratio of EEG is extremely low, especially in
real-world environments,

e EEG signals are mathematically complicated to handle since
all sensors record almost the same signal.

e Brain dynamics are very complex
— Folding of cortex differs between any two persons
— Relevant functional map differs across individuals
— Sensor locations differ across recording sessions
— Brain dynamics are non-stationary at all time scales

— Brain dynamics are very variable across subjects, tasks, experimental
conditions, etc.
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e BCILAB tutorials and presentations: ftp://sccn.ucsd.edu/pub/bcilab/
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