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Types of BCIs =
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e Active BCI (BMI): a BCI derives its outputs from brain
activity which is directly consciously controlled by the
user, independently from external events, for controlling
an application.

e Reactive BCI: a BCI derives its outputs fron brain
activity arising in reaction to external stimulation, which
is indirectly modulated by the users for controlling an
application.

e Passive or Affective BCI (BMI) derives its
outputs from spontaneous brain activity without the
purpose of voluntary control.




Lapses of Attention and Drowsiness

e Lapses of attention or drowsiness can lead to
catastrophic incidents for workers in many
occupations.

e The US National Highway Traffic Safety
Administration (NHTSA) reported that ~25% of
police-reported accidents were related to driver
inattention.

¢ National Sleep Foundation (NSF) reported that
60% of adult drivers had driven a vehicle while
feeling drowsy and 37% had actually fallen asleep.

Objectives of this Study

¢ To investigate tonic and phasic spe_ctral changes during

continuou @B TVYSEO1 O G

environment (car driving).

\
¢ To build a neuroergonomic system that can continuously
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actively perto m t dy positions

and situations within real operational environments.




Neurophysiological Correlates of Cognitive-state Changes

Study Task(s); Measure(s) Electrode Sites or Brain Regions L] 8 a B
Badia et al. (1994) Sleep onset F3,C3,01 + +/-
Baulk et al. (2001) Simulated driving task in an immobile car, secondary ~ C3-Al + +
auditory detection task; lane crossing incidents, RT,
Karolinska Sleepiness Scale (KSS)
Beatty et al. (1974) Radar monitoring task; target detection time 01-P3 +
Belyavin and Wright (1987) Visual vigilance and letter discrimination tasks; RT, P3-01, P4-Oz + + + -
error/missing rate
Campagne et al. (2004) Simulated driving on mobile platforms; running-off-  F3, C3, P3, O1 (C3, P3 shown)
nts al ons,
«Many studies Have demonstrated EEG correl ates
Eoh et al Simulated driving task (static); number of accidents Fpl, Fp2, T3, T4, -
T C|
.of fluctuations in fask performance during . .
éaf posllm KSS,RT
®
wgystained-atténtion-task on the order of one: :
Hasan and Broug] on leep on: channcl
Horn i +
SBCOHd tarseveral inutes, Chen, Huang, et al.
Huang et al. (2001) Auditory ar vlsual vlgllanc tasks; correct rate +
wyacently conducted-a-meta m@vsm"@n the EEG'
Huan et al. (2009 entzrelated lang de arture durin; slmulated dnvm 256 channeps: occipitgl and
spectral chan & accsmpany-fldetuations in task
Jung et all (1997) Auditory oddwdll task; error rat *
chk]ﬁwrﬁa rT dnvmg, KSS, self-rated pcrtormancc Cz-0z
Lal and Craig (2002, 2005) Simulated dnving in a static car frame; facial features 19 EEG channels + +
(from video) of the driver
Lowden et al. (2009) Simulated driving on a moving base; speed, lateral Fz-Al, Cz-A2, Oz-Pz + +
position, steering wheel angle, KSS
Makeig and Inlow (1993) Auditory oddball task; local error rate 13 EEG channels + + -
Makeig and Jung (1995, 1996)  Auditory oddball task, visual target detection; local Cz, Pz/0z + + - *
error rate
Makeig et al. (2000) Compensatory tracking task; tracking error F3, C4, P4, O1 (C4 shown) + +
Ogilvie and Wilkinson (1984)  Auditory response task; reaction time Cz,Pz
Ogilvie et al. (1991) Auditory response task; reaction time 14 EEG channels (C3, C4 shown) + + - -
Ota et al. (1996) Auditory response task; reaction time 18 EEG channels (F1, F2, O1, 02 t +/-
shown)
Otmani et al. (2005) Simulated driving on a mobile base; S.D. of lateral F3,C3,P3,01 +
—_—

A VR-based Dynamic Driving Simulator

UCSD




Paradigm: Single Trials Embedded in Continuous Driving
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From Huang et al., 2005, 2007.
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Data Analysis using ICA
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Component Stability: Cross-subject
clustering analysis of ICA components
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Spectral Perturbations
as a Function of RT
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Translating Neuroscience Principals
and Knowledge into
Neuroergonomic Systems

Real-time Cognitive-State
Monitoring
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Correlation between Power Spectra and
Driving Performance
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From Lin et al, EURASIP, 2005.

Real-time Drowsiness Monitoring

1. Training

Pilot data |—| SPectral Feature Machine-learning
Estimation Extraction Classifiers
Model & parameters
parameters
2. Estimating fatigue
! 4
Real-time Spectral Feature —_ Machine-learning
data acqui. Estimation Extraction Classifiers
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Can Arousing Feedback Prevent
Lapse in Performance?

References:

1. Lin, et al., NeuroImage, 2010.
2. Jung, et al., IEEE EMBC, 2010.
3. Huang et al., IEEE EMBC, 2010.
4. Wang et al., IEEE BioCAS, 2012.




¢ Threshold: three times the mean alert RT
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Effective & Ineffective Warning Signals

Some of them had RTs Still Longer than three times the mean RT,
defined as “ineffective feedback”; others had RTs shorter than two
times the mean RT, defined as “effective feedback”

Behavioral Improvements following
Arousing Signals

e The RTs of trials following warning were significantly
shorter (p<0.01) than those without warning (left panel).

e The RTs of effective trials were significantly shorter
(p<0.001) than those of ineffective trials (right panel).
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Power Spectra Changes after a
Warning Feedback

o [Effective trials (left panel): the spectral differences between current
(solid line) and next trials (dashed line) were statistically significant
(p<0.005) and most prominent in the theta and alpha bands with
over 5 dB to 10 dB decreases after receiving arousing feedback.
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From Jung et al, IEEE EMBC 2010.
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RT | Response Time
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Trial
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Threshold E Warning feedback
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Feature Extraction
—> PCA, Forward FS,
Backward FS, OLPP

EEG power spectrum

ML, KNN, SVM

From Huang, Jung et al, IEEE EMBC 2012.

Classification Accuracies obtained by
different feature extractions and classifiers

PCA Forward FS  Backward FS
Feature Extraction
The accuracies of ML, KNN and SVM classifiers were over 70%.

9F

80F

0F

60

50F

40F

Accuracy (%)

30F

20F

From Huang, Jung et al, IEEE EMBC 2012.
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A Closed-loop Drowsiness Monitoring &
Management System

START Drowsiness® / Warning

©

Drowsiness' / Warning

Feedback
efficacy
assessment

Driving
performance
monitoring )
Subject alert

Wang et al., IEEE BioCAS, 2012.

Objectives of this Study =

e To investigate tonic and phasic spectral changes during
continuous sustained-attention tasks in a realistic
environment (car driving).

e To build a neuroergonomic system that can
continuously monitor brain dynamics and cognitive
states of participants actively performing ordinary
tasks in natural body positions and situations within
real operational environments.
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Missing Link =

Clinical Neurophysiology
Volume 118, Issue 9, September 2007

CLINICAI
NEUROPHYSIOLOGY

The current laboratory-oriented EEG systems do
== not allow assessment of brain activities of
| participants performing tasks involving natural
movements.

NCTU’s MW-EEG
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| Brain
Research

MINDO --- 2ch/4ch Channels o

. EEG Headband
Features Distributed Circuits
DAQ: 20 x 18 W@H (4 pieces)
Miniaturization p— I
Size (mm) | \icy: 40 x 25
Weight <100 g
Sampling Rate 512Hz
Bandwidth Filter to 0.5 - 50 Hz
Gain 6000 times
Output current
ool 31.58 mA
Battery Life
3.7V, 1100mA) 33 hours
A Wearable and Wireless =
DMM System UCSD
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Summary

» This study has reported both tonic and phasic spectral
dynamics of independent components in response to lane-
deviations during a continuous lane-keeping driving task.

» Arousing auditory feedback delivered to the drowsy subjects
immediately agitated subject’s responses to the events.

» The improved behavioral performance was accompanied by
concurrent spectral suppression in the theta- and alpha-bands
of bilateral occipital components.

» We also showed that continuous, accurate, noninvasive and
near real-time estimation of subject’s cognitive level is feasible
in a realistic operational environment.

» It is feasible to integrate novel dry sensors, advanced signal-
processing algorithms and miniature supporting hardware into
a mobile & wireless cognitive-state monitoring and
management system.

C
N
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XX Neuroscience and Neurotechnology

World-wide neuroscience efforts
« 19,821K neuroscience publications (www.scimagojr.com)

e 31 (115) countries produced over 100K (1K) documents
(www.scimagojr.com)

» Over 300 neuroscience journal titles

« Neurotech industry has a > $140 billion investment annually (NIO,
2009).

Problem: How to create the ability to leverage the vast world-
wide neuroscience efforts to further advance neuroscience
research, and improve prevention, diagnosis, and treatment of

neurological diseases and injuries?
I —




<X Major Barriers/Challenges

UCSD A N e N A e N A LRSS R,

1. Lack of portable, user-acceptable, robust systems for
monitoring brain and body dynamics in real-world
environments.

2. Lack of mathematical modeling methods to find statistical
relationships among the variations in environmental,
behavioral, and functional brain dynamics.

3. Restrictive experimental control and impoverished
paradigms and environments.

Major Barriers/Challenges 3
UCSD AN AN NN e e A @]2 Jxﬁ_ ,: .&1

2. Lack of mathematical modeling methods to find statistical
relationships among the variations in environmental,
behavioral, and functional brain dynamics.

3. Restrictive experimental control and impoverished
paradigms and environments.
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Modeling Event-Related Brain Dynamics

1. Un-mix cortical and artifact source contributions to the scalp
electrodes using independent component analysis (ICA).

2. Visualize the activities of independent component (IC)
sources across single trials using ERP-image plotting.

3. Model the event-related dynamics of the IC sources using
time/frequency analysis.

4. Localize the separated IC sources using inverse source
mapping methods.

5. Compare similarities in IC dynamics and locations across
subjects using IC cluster analysis.

6. Examine the interaction between brain areas using
component cross-coherence or effective connectivity.

5-Hz Brain Dynamics

-408 ms . .

530 1000
tima (ms)

Makeia et al.. PLoS Bioloav. 2004
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Categorizations of Large-Scale
Brain Connectivity Analysis

(Bullmore and Sporns, Nature, 2009)

Structural Functional Effective

state-invariant,  dynamic, state-dependent, dynamic, state-dependent,
anatomical correlative, symmetric asymmetric, causal,

information flow
Hours-Years

Temporal Scale

Copied from Mullen, T. EEGLAB SIFT Toolbox, 2010.

Granger Causality

= First introduced by Wiener (1958). Later reformulated by
Granger (1969) in the context of linear stochastic
autoregressive models

= Relies on two assumptions:

Granger Causality Axioms

1. Causes should precede their effects in time (Temporal
Precedence)

2. Information in a cause’s past should improve the
prediction of the effect, above and beyond the information
contained in past of the effect (and other measured
variables)

From Mullen’s Tutorial of SIFT at EEGLAB Workshop in Beijing, China, 2012. 15
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Granger Causality

Does X4 granger-cause Xi?

prediction error for X4
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Mobile wireless EEG + BCILAB/SIFT 1N

MWEEG (NCTU) and BCILAB/SIFT (UCSD)

< Major Barriers/Challenges
UCSD AN A e e AN e e A M % Ph AW

3. Restrictive experimental control and impoverished
paradigms and environments.
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Impoverished EEG Paradigms

and Environment
UCSD o« o nn i oS~ BB A

A typical EEG experiment

EEG data at Fz

=

Measurements:
» 256 active EEG electrodes
» Simultaneous physiological data:
* ECG, Breath, Blood Oxygen, EMG

2
=
>

Behavior
> Button press?

Typical EEG
experiment

We must record simultaneously, during

naturally motivated behavior,
© ERP poak » What the brain does (high-density EEG)
» What the brain experiences ( sensory
scheme recording)
» What the brain organizes (eye & body
movements, psychophysiology).
- Makeig et al., 2009.

Feasibility Study: VEP on a Treadmill

=== ~é
Infrared motion capture [
light source and camera

Force measuring
1 dual-belt treadmill §

R—1

From Gramann et al, Frontiers in Human Neuroscience, 2010.
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Feasibility Study: VEP on a Treadmill

Standing

Slow Walking
(0.8 m/s)

Fast Walking
(1.3 m/s)

Target ERPs

Non-Target ERPs

5pv P1 | P3 5uv P1 P3
| | |
100 0 100 { 200 300 400 500 600 -100 0 100 i 200 300 400 500 600
-5 pv NI1 Latency (ms) -5 pVJ- N‘1 Latency (ms)

From Gramann et al, Frontiers in Human Neuroscience, 2010.
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i’ Mobile Brain/Body Imaging (MOBI)

UCSD i e iy Tt
Spatial Navigation Natvat o Ty e

Gedeon Deak et al., 2011.

Progress in BCIs We Expectto |[<&
See in the Near Future UCSD)

Direct Control: to comprise the task the user performs (e.g.
the movement of a prosthetic).

Indirect Control: to use neural information associated with
the human perception of “errors” to augment control systems.
Communications: to enable patients with little to no
communication capability to generate speech.

Brain-process modification: to help individuals adjust their
own brain function to attain a more desirable state.

Neural State Detection: to detect fatigue, attentional,
arousal, and affective levels, allowing systems or environments

to adapt to the state of the user, increasing joint user-system
performance.
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