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MRI Lecture 7

fMRI

MRI studies brain anatomy.

Functional MRI (fMRI)

studies brain function.
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History of Functional MRI
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The Rise of fMRI

fMRI
—

g

Citations per yea
SR o, i

1980 1985 1990 1995 2000 2005

1

PET and SPECT
i ?qj =

Proportion
S 2 &
S o
o F

1980 1985 1990 1995 2000 2005

MEG and EEG

wiuy

Friston, 2010,
Science

What is functional magnetic resonance
imaging (fMRI)?
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* fMRI provides non-invasive estimates of brain function
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Oxygen Extraction
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Blood Flow and Oxygen Metabolism
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fMRI Acquisition

High spatial resolution High temporal resolution

MP-RAGE EPI
Voxel volume: 1 mm?3 Voxel volume: 45 mm3

Imaging time: 6 min Imaging time: 60 msec
Buxton 2002
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Field Inhomogeneities

EPI Distortions and Signal Dropouts
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Fig. 12.9 True image SE image GE image
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Spin Echo

Discovered by Erwin Hahn in 1950.

The spin-echo can refocus the dephasing of spins due
to static inhomogeneities. However, there will still be
T, dephasing due to random motion of spins.

There is nothing that nuclear spins will not do for you, as

long as you treat them as human beings. Erwin Hahn
Image: Larry Frank

beckman.uiuc.
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Task-Related BOLD fMRI
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Functional MRI

ge-amplitude, spatially correlated fluctuations in BOLD fMRI
signals during extended rest and early sleep stages
Masaki Fukunaga®*, Silvina G. Horovitz", Peter van Gelderen®, Jacco A. de Zwart’,
J. Martijn Jansma®, Vasiliki N. Ikonomidou®, Renxin Chu’, Roel H.R. Deckers’,
David A. Leopold®, Jeff H. Duyn®
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Acute effects of alcohol on neural correlates of
episodic memory encoding

O3 Gill H, Skibic
Imaging obesity: IMRI, food reward, and feeding.

Cell Metab. 2007 Dec:6(63423-5
PMID: 18054310 [PubMed - indexed for MEDLINE]

See Detais. No tems found.
Your search for donuts i retrieved 10 results.
H h the

asdon.* and Endel Tulving"

Hedvig Soderlund,** Cheryl L. Grady,*>* C:

Marketing actions can modulate neural
representations of experienced pleasantness

. . Baba Shiv!,

Neural A Patterns of
Dependent Subjects During Decision Making
Predict Relapse

o T / tanr 23, Feng shen 1, Jorge Vilegas 1, Paul Wright 23, Guojun He 23, vijun Liu23

Lo - . Hippocampal Activation for
Distinguishing spe | " | effects in Autobiographical Memories over the
fMRI—Subcortical and cortical arousal during erotic picture viewing Entire Lifetime in Healthy Aged Subjects:

. . . An fMRI Study
Martin Walter.** Felix Bermpohl” Harold Mouras.® Kolja Schiltz** Claus Tempelmann.’
Michael Rotte.” Hans Jochen Heinze,' Bernhard Bogerts," and Georg Northoff*

Task-Related BOLD fMRI
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http://www.scholarpedia.org/article/Statistical_parametric_mapping_(SPM)

Cabernet and fMRI

1050-1054 | PNAS | January22,2008 | vol. 105 | no.3

Marketing actions can modulate neural
representations of experienced pleasantness

Hilke Plassmann*, John O'Doherty*, Baba Shiv', and Antonio Rangel**
*Divsion of the Humanities and Soclal ciences, Californa Institute of Technology, MC 22877, Pasadena, CA 91125; and *Stanford Graduate School

.
e it o M
e 2 NG )
= iy = ot signifcant s o /\v

22 ssune- sisune \)/

[ S 3

pabyms)

v

Yo E

[¢]

o]
m

Wi goa
es
s02
801
g0 F
S s S0 S0 S newm =
£02 —510 wine ~$90 wine
Es* 2%}
me g, Fo dogustaton onsat
5 as) im
o«
RATE LIKING/INTENSITY £ y . i
B z, Fig. 2. The effect of price on each wine. (4) Wine 1 averaged time courses
§ 6 £2 I in the medial OFC voxels shown in B (error bars denote standard errors). (8)
=notatall = very much 3, L Wine 1: activity in the mOFC was higher for the high- ($45) than the low-price

- condition ($5). Activation maps are shown at a threshold of P < 0.001 uncor-
rected and with an extend threshold of five voxels. (C) Wine 1: activity in the
VMPFC was also selected by the same contrast. (D) Wine 2: averaged time
courses in the medial OFC voxels shown in E. (E) Wine 2: activity in the mOFC
‘was higher for the high- ($90) than for the low-price condition ($10). (F) Wine
2: activity in the vmPFC was higher for the same contrast.

Fig. 1. Experimental design and behavioral results. (A) Time course for a
typicaltrial. (8) Repor i (O)Reported
pleasantness for the wines during the cued price trials. (D) Taste intensity

ratings for i
the wines obtained during a postexperimental session without price cues.




Resting-State BOLD Connectivity

Resting-State fMRI
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Task-Related
Motor Activation Map

Resting State
Correlation Map

Resting State fMRI Signals
From Left and Right Motor
Cortices
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http://www.youtube.com/watch?v=VaQ661DZ-08 &feature=plcp

Default Mode and Attention Networks
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(c) Vegetative state subject who recovered consciousness
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(d) Impaired awareness subject (MCS)

Fig. 1. Intrinsic correlations between a seed region in the PCC and all other )
voxels in the brain for a single subject during resting fixation. The spatial [r— )
distribution of correlation coefficients shows both correlations (positive val- )
ues) and anticorrelations (negative values), thresholded at R = 0.3. The time
course for a single run is shown for the seed region (PCC, yellow), a region
positively correlated with this seed region in the MPF (orange), and a region
negatively correlated with the seed region in the IPS (blue).
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http://www.newscientist.com/data/images/ Ovadia-Caro S, Nir Y, Soddu A, Ramot M, et al. (2012) Reduction in Inter-Hemispheric C:
Gusnard et al, Nat Rev. Neuro, 2001; Fox et al, PNAS 2005 archive/2681/26811501.jpg PLoS ONE 7(5): €37238. doi:10.1371/journal. pone.0037238

http://www.plosone.org/article/info:doi/10.137 1/journal.pone.0037238
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MAP OF HUBS BASED ON
NETWORK ANALYSIS OF HUBS
DEGREE CONNECTIVITY
Figure 1. Methods foridentifing cortical hubs and networks. 4, The basis of the present methods isthe intrinsic BOLD signal flctuations that correlate between brin regions eflecting
monosynaptic connections. B, the pattern
1000 nodes). €, the degree of
computed and projected onto the ortical surface of the brain. Candidate hubs are thos regions with disroportioately high connectivity and are plottein yellow and red. D, As a secondary
analysis, the peak of X

Buckner et al, J. Neuroscience, 2009
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Nova 32 channel

Real-Time fMRI

MRI Scan

Control Image Time Series

Functional Images

Statistical Detection
of Signal Changes

http://www.brainmapping.org/MarkCohen/research/RTfMRI.html
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Fig. 3. Single subject statistical maps (left) and BOLD time-courses (right) of the right anterior insula in the first (top) and in the last session (bottom). The
sclected region of interest is delincated by the green box. Functional images are in the radiological convention and are not normalized. Statistical significance was
based on ¢ test comparing activation on each voxel during the regulation blocks with respect to the baseline blocks, with a threshold of P<0.05 false discovery
rate (FDR) corrected for multiple comparisons (Genovese et al., 2002). The time course of the BOLD activity (white line) is related to the ROI selected and is
showing the progress during the regulation blocks (green) and the bascline blocks (gray). Number of volumes is in the x axis and magnitude signal in the y axis;
these values are the raw output from the scanner.

Caria et al, NIMG 2007

Timeline

Michael Crichton, 1999

“Most people”, Gordon said, “don’t realize that the
ordinary hospital MRI works by changing the quantum
state of atoms in your body ... But the ordinary MRI does
this with a very powerful magnetic field - say 1.5 tesla,
about twenty-five thousand times as strong as the earth’s
magnetic field. We don’t need that. We use
Superconducting QUantum Interference Devices, or
SQUIDs, that are so sensitive they can measure resonance
just from the earth’s magnetic field. We don’t have any
magnets in there”.

J. Clarke, UC Berkeley
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Compressed Sensing

Slide Credit: http://www.stanford.edu/~mlustig/

Compressed Sensing
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A convex non-linear
reconstruction

Slide Credit: http://www.stanford.edu/~mlustig/
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