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ABSTRACT OF THE DISSERTATION 

 

Variability in Functional Magnetic Resonance Imaging: 

Influence of the Baseline Vascular State and Physiological Fluctuations 

 

by 

 

Yashar Behzadi 

 

Doctor of Philosophy in Bioengineering 

University of California, San Diego, 2006. 

 

Professor Thomas T. Liu, Chair 

Professor Andrew D. McCulloch, Co-chair 

 

In recent years, functional magnetic resonance imaging (fMRI) has become an increasingly 

important tool for studying the working human brain. The blood oxygenation level dependent 

signal signal used in most fMRI experiments is an indirect measure of neural activity and 

reflects local changes in deoxyhemoglobin content, which is a complex function of dynamic 

changes in cerebral blood flow, cerebral blood volume, and the cerebral metabolic rate of 

oxygen. Although significant progress has been made in characterizing and modeling the link 

between neural activity and the hemodynamic response, the quantitative interpretation of basic 

neuroscience and clinical studies has been limited by sources of variability unrelated to the 

evoked neural response.  

The fMRI signal has been shown to have a complex dependence on the baseline vascular 

state. This dependence is especially relevant in clinical settings where significant variations in 
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the vascular state due to factors such as aging, disease, medication, or diet can confound the 

interpretation of the data.  Additionally, physiological fluctuations, related to the respiratory and 

cardiac cycle, have been shown to modulate the fMRI signal and are becoming an increasingly 

important confound as neuroimaging moves to higher magnetic field strengths. 

The first objective of this work is to characterize and model the effect of the baseline 

vascular state on the dynamics of the fMRI signal. The second objective of this work is to 

develop a technique to reduce the effect of physiological fluctuations on the fMRI signal.  

Developments proposed in this work represent an important step in developing fMRI as a 

quantitative research and clinical tool. 
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Chapter 1 
 

Introduction 

 

 
 
1.1 fMRI: An Introduction 

 Understanding the roots of consciousness and cognition in the human brain has been a 

fundamental scientific endeavor for hundreds of years; spanning the realms of psychology, 

biology, and philosophy. Over the last decade, researchers have increasingly looked to  

functional magnetic resonance imaging (fMRI) as a powerful non-invasive tool to help study 

the working human brain. 

 fMRI is rooted in the observations of Italian physiologist Mosso who in 1881 was the first 

to describe a functional change in regional brain circulation evoked by a mental task (Mosso, 

1881). He noted that with mental calculation brain pulsations rose over the right prefrontal 

cortex in a patient with a bony defect in the skull (Mosso, 1881). Roy and Sherrington (1890) 

later presented the idea of the regional control of cerebral blood flow (CBF), generally stating 

that chemical byproducts of cerebral metabolism associated with increased neural activity 

regulated the caliber of nearby arterioles (Roy et al., 1890). Direct measurements of CBF in 

humans were not possible until 1948 when Kety and Schmidt introduced the nitrous oxide 

technique (Kety et al., 1948). Although this technique was limited to measuring global 

perfusion it led to subsequent techniques using radioactive tracers. In turn, these techniques led 

to the development of Positron Emission Tomography (PET) in 1970’s and 1980’s, which 

allowed insight into the local metabolic and hemodynamic responses to neural activation on a 

spatial scale of several centimeters. 
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In 1990, Ogawa et al. first demonstrated modulation of the magnetic resonance (MR) signal 

with physiological manipulations of blood  oxygenation (Ogawa et al., 1990). Coined the blood 

oxygenation level dependent (BOLD) signal, this phenomena formed the foundation of fMRI. 

With neural activation, an accompanying increase in neuronal energy consumption triggers 

regional cerebral blood flow (CBF) increases that serve to deliver needed nutrients (O2, glucose, 

etc) and remove unwanted byproducts (lactate, heat, etc.). Coupled with changes in cerebral 

blood volume (CBV) and oxygen extraction, the regional CBF alters the concentration of 

deoxyhemoglobin [dHb].  Hb possesses a useful magnetic property in that it is diamagnetic 

when oxygenated and paramagnetic when deoxygenated (Pauling et al., 1936). dHb affects the  

magnetic susceptibility within and around blood vessels, creating microscopic inhomogenities, 

which cause a greater degree of  spin dephasing (Ogawa et al., 1990). The MR signal is 

consequently  reduced in the presence of dHb. As a result, dHb acts as an endogenous contrast 

agent that serves as an indirect marker of localized neural activity. Leveraged into the BOLD 

effect, changes in dHb content with neural activity serve as the basis of fMRI. 

fMRI, utilizing the BOLD signal, has been used extensively for brain mapping and 

confirmed the spatial location of known anatomically distinct processing areas such as the 

visual cortex (Belliveau et al., 1991);  (Blamire et al., 1992, the motor cortex {Kim, 1993 #285; 

Kim et al., 1993) and Broca's area of speech and language-related activities (Hinke et al., 1993). 

The main advantages to fMRI as a technique to image brain activity is that the signal does not 

require injections of radioactive isotopes, the total scan time required can be on the order of 

minutes per run, and the in-plane resolution of the functional image can be as small as 1mm. An 

emerging advantage of fMRI is the ability to obtain and integrate measurements related to other 

physiological parameters. For example, CBF can be measured with Arterial Spin Labeling 

(ASL), a class of non-invasive MRI methods that involve taking the difference of two sets of 
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images: tag images, in which the magnetization of arterial blood is inverted or saturated, and 

control images in which the magnetization of arterial blood in fully relaxed (Golay et al., 2004).   

Although a powerful technique, fMRI provides only an indirect measure of neural activity 

related to the  interaction of the neural and hemodynamic systems. The hemodynamic response 

(HDR) entails the complicated interaction of  dynamic changes in CBF, CBV, and the cerebral 

metabolic rate of oxygen (CMRO2). Although 125 years have passed since Mosso’s observation 

that local perfusion is coupled to neural activity, the details of the hemodynamic events 

following neural activity remain to be fully described.  

1.2 fMRI: Evoked Signal Response 

A simple schematic of the fMRI response is presented in Figure 1.1. The basic picture of 

the hemodynamic response to neural activity is simple although the specifics are complex and 

not entirely understood. With neural activity, tissue metabolism is increased to support neuronal 

firing and the restoration of ionic gradients. The release of various vasoactive agents modulates 

CBF which consequently drive changes in CBV and together with CMRO2 determine the [dHb]. 

As described earlier, the resulting BOLD signal is a function of the total dHb content. A more 

comprehensive  examination of the neural and metabolic events underlying the BOLD signal as 

well as the associated MR physics is provided in the appendices.  

A typical evoked BOLD signal is presented in Figure 1.2. In the first few seconds following 

the onset of increased neural activity, tissue metabolism increases rapidly leading to increases in 

oxygen consumption and CBF. With activation CBF increases much more than CMRO2 

resulting in a large influx of fully oxygenated blood and a decreases in [dHb]. As mentioned 

previously, the presence of dHb increases local spin dephasing and decreases the MR signal. 

Decreases in [dHb]  following large CBF increases  lead to a  positive BOLD signal as depicted 

in figure 1.2. If in the first few seconds of the BOLD response, the CMRO2  
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Figure 1.1. Simplified cascade of events following evoked neural activity. Evoked neural 
activity leads to increases in tissue metabolism and the release of various vasoactive agents 
which regulate the local blood flow. Changes in the local blood flow modulate the blood 

volume and the [dHb]. 
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increases more quickly than CBF, it can lead to an initial transient increase in dHb and an 

associated “initial dip” in the BOLD signal (Ernst et al., 1994; Hu et al., 1997; Malonek et al., 

1996; Menon et al., 1995; Thompson et al., 2004).  The typical BOLD response can be  

parameterized by the rise-time, full-width-half-maximum (FWHM), and the peak amplitude of 

the response. The CBF and BOLD responses are typically delayed 1-2 seconds following neural 

activity and have a broad temporal width  on the order of 4-6 s (Bandettini et al., 1992). A post-

stimulus undershoot is often observed and is thought to reflect the slow resolution of CBV with 

respect to CBF following cessation of stimulus (Buxton et al., 2004).  

1.3 Influence of the Baseline Vascular State 

A number of recent studies have shown that the dynamic CBF and BOLD response to 

neural stimulus exhibits an intriguing dependence on the baseline CBF level. Studies in visual 

cortex have shown that the temporal width and time to peak of the visual BOLD response 

increases with hypercapnia and decreases with hypocapnia, while the peak amplitude of the 

response show the opposite dependence (Cohen et al., 2002; Kemna et al., 2001). Studies in our 

laboratory have shown that caffeine has similar effects as hypocapnia and can lead to significant 

variation in the observed BOLD signal (Liu et al., 2004).  

There is also growing evidence to suggest that the dynamics of the BOLD response change 

with age. Some studies of the dynamic BOLD response have described age-related increases in 

the temporal parameters (e.g. latency, time to peak) of the response (Mehagnoul-Schipper et al., 

2002; Richter et al., 2003; Taoka et al., 1998). The baseline vascular state can  affect various 

physiological parameters responsible for the CBF and BOLD responses. Figure 1.3 is a 

schematic outlining the possible influence of the baseline vascular state on the governing 

physiological parameters of the BOLD response. Understanding the effect of the baseline 

vascular state on BOLD dynamics is important for many clinical studies. For example,  
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Figure  1.2. Schematic of a typical evoked BOLD response. Following stimulus onset, 
the initial increase in CMRO2 leads to increased dHb and to an “initial dip” in the BOLD 
response.  CBF then increases more than CMRO2 driving dHb down and leading to the 
positive BOLD response. The post-stimulus undershoot recovers slowly back to baseline 
and is thought to arise from the slow resolution of CBV relative to CBF.    
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a study investigating the effect of  a  drug on neural activity may be complicated if the drug also 

has vasoactive effects. The potential differences between treatment groups may be interpreted 

as  differences in the underlying neural activity although a significant portion of the effect is  

attributed to the drug’s effect on the baseline vascular state. Complications may also arise in 

studies in which members of a study group have significantly different vascular states. This is 

an inevitable complication in studies comparing young and elderly adults. A model capable of 

describing the complex dependence of the observed BOLD dynamics on the baseline vascular 

state will be beneficial in the interpretation of fMRI studies. 

1.4 The Elusive Initial Dip 

The observed dynamics of the evoked BOLD response have sparked debate in the fMRI 

literature. An ongoing debate in fMRI has centered on the presence of the initial dip. As 

mentioned previously in section 1.2, the initial dip of the BOLD response has been attributed to 

an immediate increase in CMRO2 prior to CBF increases. Several investigators have shown that 

the initial dip is well localized to areas of neural activity (e.g. cortical columns),  whereas the 

delayed positive BOLD response is more diffuse,  most likely reflecting coarse CBF control 

(Duong et al. 2000; Yacoub et al. 2001; Kim et al. 2000; Yacoub and Hu 2001). The increased 

spatial specificity of the initial dip compared to the positive BOLD response has been of 

particular interest to the  brain mapping community. However, the initial dip is not always 

detected and different research groups have debated its presence (Buxton, 2001). 

Since the initial dip is a result of the temporal mismatch between CMRO2 and CBF 

dynamic responses,  modulation of either response will affect the detection of the initial dip. As 

previously mentioned, the baseline vascular state has been shown to modulate the CBF response 

and it may also play a role in the detection of the initial dip of the BOLD response. 



 

 
 

8 

1.5 Influence of Physiological Noise 

Further complicating the interpretation of the fMRI signal is the confounding effect of 

physiological noise. Physiological fluctuations have been shown to be a significant source of 

noise in BOLD fMRI experiments with a more pronounced effect in perfusion-based fMRI 

utilizing ASL techniques (Kruger et al., 2001; Restom et al., 2006). Figure 1.3, depicts the 

effect of physiological noise on the governing physiological parameters of the BOLD signal. 

The local blood flow is a function of cardiac cycle and the movement of the thoracic cavity with 

respiration modulates the main magnetic field, B0, which affects imaging (Glover et al., 2000; 

Hu et al., 1995). 

Physiological noise has been shown to be a limiting factor for perfusion and BOLD-based 

studies in the medial temporal lobe (Restom et al., 2006). Also the decreased signal-to-noise in 

elderly subjects compared to younger adults has been attributed to the greater inherent 

physiological noise (Huettel et al., 2001). The importance of removing physiological noise from 

the fMRI signal is especially relevant in studies of Alzheimer’s disease, in which researchers 

aim to probe the subtle differences in the fMRI response in the medial-temporal lobe of elderly 

subjects.  

Physiological noise is an important confound limiting the application of fMRI and many 

approaches  have been developed to remove cardiac and respiratory related-noise. Methods 

include the use of pulse-oximeter time courses (Biswal et al., 1996; Hu et al., 1995),  image 

based retrospective  correction (RETROICOR), k-space based correction (RETROKCOR) and 

navigator echo based correction (DORK) (Glover et al., 2000; Josephs et al., 2001; Pfeuffer et 

al., 2002).  However, these approaches have not been universally implemented since they 

require external monitoring of physiological processes or pulse sequence adaptations. An 

approach not dependent on the use of external monitoring equipment or pulse sequence 

adaptation will be valuable to the broad fMRI community. 
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Figure 1.3. Schematic activation cascade (black) showing the confounding effects of the cardiac 
cycle and respiration (blue) along with the effect of the baseline vascular state (green) on various 

physiological quantities. The fMRI signals (gray) are strongly affected by these confounds.   
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1.6 Thesis Outline 

The first objective of this thesis is to characterize and model the effect of the baseline 

vascular state on the dynamics of the fMRI signal. The second objective of this work is to 

develop a robust technique for the reduction of physiological noise in fMRI time-series data. 

Chapter 2 will present an arteriolar compliance model of the evoked CBF response to neural 

stimulus. Coupled with the balloon model of the BOLD response, the combined model  will be 

used to interpret and predict the experimentally observed dependence of the dynamics of the 

fMRI response on the baseline vascular state.  

In chapter 3 we will investigate the effect of the baseline vascular state, as modulated by 

caffeine, on the detection of the initial dip. This study will serve to highlight the importance of 

the baseline vascular state on the dynamics of the fMRI signal and provide insight into the 

ongoing debate regarding the presence of the initial dip. 

Chapter 4 will provide an in depth exploration of the effect of physiological noise on fMRI 

time-series data. A novel component-based correction (CompCor) scheme will be presented for 

the reduction of noise in BOLD and perfusion-based fMRI and compared to an established 

retrospective image based technique for the reduction of cardiac and respiratory induced noise. 

CompCor will be shown to be a robust method for the effective removal of cardiac and 

respiratory noise in the fMRI signal.  

This thesis will conclude with a summary of the contributions and future directions of the 

work presented in chapters 2-4. The accompanying appendices provide an introduction on the 

biophysical origin of the fMRI signal, in which a primer on MR physics is followed by a 

comprehensive review of neurovascular coupling as related to the CBF and BOLD responses. 
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Chapter 2 
 

An Arteriolar Compliance Model of the CBF Response 
 

to Neural Stimulus 
 
 

2.1 Abstract 

Although functional magnetic resonance imaging (fMRI) is a widely used and powerful tool 

for studying brain function, the quantitative interpretation of fMRI measurements for basic 

neuroscience and clinical studies can be complicated by inter-subject and inter-session 

variability arising from modulation of the baseline vascular state by disease, aging, diet, and 

pharmacological agents.  In particular, recent studies have shown that the temporal dynamics of 

the cerebral blood flow (CBF) and the blood oxygenation level dependent (BOLD) responses to 

stimulus are modulated by changes in baseline CBF induced by various vasoactive agents and 

by decreases in vascular compliance associated with aging. These effects are not readily 

explained using current models of the CBF and BOLD responses.  We present here a second-

order nonlinear feedback model of the evoked CBF response in which neural activity modulates 

the compliance of arteriolar smooth muscle. Within this model framework, the baseline vascular 

state affects the dynamic response by changing the relative contributions of an active smooth 

muscle component and a passive connective tissue component to the overall vessel compliance.  

Baseline dependencies of the BOLD signal are studied by coupling the arteriolar compliance 

model with a previously described balloon model of the venous compartment.  Numerical 

simulations show that the proposed model describes to first order the observed dependence of 

CBF and BOLD responses on the baseline vascular state.  
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2.2 Introduction 

The blood oxygenation level dependent (BOLD) signal used in most fMRI experiments 

reflects local changes in deoxyhemoglobin content, and is a complex function of dynamic 

changes in cerebral blood flow (CBF), cerebral blood volume (CBV), and the cerebral 

metabolic rate of oxygen (CMRO2) (Buxton et al., 1998).  Although significant progress has 

been made in characterizing and modeling the hemodynamic response (HDR) to brain 

activation (Buxton et al., 1998; Hoge et al., 1999; Logothetis et al., 2004; Mandeville et al., 

1999), the quantitative interpretation of fMRI measurements is complicated by inter-subject and 

inter-session variability caused by differences in baseline physiology. An understanding of this 

dependency is especially relevant to the application of fMRI in clinical settings where 

significant variations in vascular state due to factors such as aging, disease, medication or diet 

can confound the interpretation of the data (D'Esposito et al., 2003; Handwerker et al., 2004) 

A number of recent studies have shown that the dynamic CBF response to neural stimulus 

exhibits an intriguing dependence on the baseline CBF level.  Laser Doppler flow 

measurements characterizing the dynamic CBF response in rats indicate that the response slows 

down significantly with elevated baseline CBF due to hypercapnia (Ances et al., 2001; 

Bakalova et al., 2001; Matsuura et al., 2000) and speeds up slightly with decreased baseline 

CBF due to either hypocapnia (Matsuura et al., 2000) or hyperoxia (Matsuura et al., 2000; 

Matsuura et al., 2001).  An arterial spin labeling MRI study in rats has reported similar results 

(Silva et al., 1999).  In humans, a hypocapnia-induced decrease in the rise time of the velocity 

response to visual stimulation has been observed in an ultrasound Doppler study of the posterior 

cerebral artery (Rosengarten et al., 2003).   Additional evidence for a change in CBF dynamics 

can be inferred from BOLD measurements.  Studies in visual cortex have shown that the 

temporal width and time to peak of the visual BOLD response increases with hypercapnia and 

decreases with hypocapnia, while the peak amplitude of the response show the opposite 
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dependence (Cohen et al., 2002; Kemna et al., 2001). In addition, the post stimulus undershoot 

in the response resolved more quickly with hypocapnia and appeared to be abolished with 

hypercapnia (Cohen et al., 2002).  Cohen et al (Cohen et al., 2002)  note that the observed 

changes are perplexing, since a decrease in baseline CBF might be expected to correspond to 

reduced blood velocities and therefore a slower dynamic response (see for example,  

simulations in  (Mildner et al., 2001)). The effect of hyperoxia on the BOLD response appears 

to be similar to the effect of hypocapnia and is consistent with laser Doppler flow findings in 

rats (Kashikura et al., 2001).  

There is also growing evidence to suggest that the dynamics of the HDR change with age. 

Some studies of the dynamic BOLD response have described age-related increases in the 

temporal parameters (e.g. latency, time to peak) of the response (Mehagnoul-Schipper et al., 

2002; Richter et al., 2003; Taoka et al., 1998). However, other studies have reported no changes 

with age (Buckner et al., 2000; D'Esposito et al., 1999).  The reports of increases in the temporal 

parameters are consistent with the results of a functional near-infrared spectroscopy (fNIRS) 

showing broadening and less undershoot in the time courses of oxyHB and deoxyHB in 

prefrontal cortex for the elderly subjects as compared to young subjects (Schroeter et al., 2003).  

Similarly, an ultrasound Doppler study of velocity increases in the posterior cerebral artery 

induced by visual stimulation found significant age-related decreases in the slopes of the 

velocity response (Panczel et al., 1999).  The slowing down of the vascular dynamics may be 

related to the age-related reduction in the elasticity of the arteriolar wall, which reflects a 

decrease in smooth muscle and elastin components and an increase in the less distensible 

collagen and basement membrane components (Hajdu et al., 1990; Riddle et al., 2003).  In 

addition, the decrease in baseline CBF with age may play a role (Bentourkia et al., 2000; 

Leenders et al., 1990; Marchal et al., 1992; Martin et al., 1991). The studies described suggest 

the following working observations: baseline CBF decreases with age, vascular compliance 
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decreases with age, and the HDR decreases in amplitude and slows down with age.  Note that in 

marked contrast to the quickening of the HDR with baseline CBF decreases induced by 

vasoconstrictive agents, the age-related decrease in baseline CBF is associated with a slowing 

down of the HDR.   

As the field of fMRI has evolved, several dynamic models of the HDR have been 

developed.  Two popular models, the balloon model and the post-arteriole windkessel model, 

were motivated in part by observations of a post-stimulus undershoot in the BOLD response and 

of differences between the CBF and CBV dynamic responses (Buxton et al., 1998; Mandeville 

et al., 1999). In these models, CBF is the input that drives changes in CBV. To calculate the 

BOLD response, the balloon model is coupled to a dynamic model of the total amount of 

deoxyhemoglobin that reflects mass conservation and the relation between CMRO2 and CBF 

(Buxton et al., 1998).   

To generate a CBF response that could be used as an input to the balloon model, Friston and 

colleagues (Friston et al., 2000) introduced a linear feedback model of the CBF response.  In 

this model, an increase in neural activity u(t) (equal to zero at rest) leads to an increase in the 

concentration of a flow-inducing signal s through the first order differential equation 

)1()( −−−= fgsktus fsε& , where ε  is the neuronal efficacy, sk  is the rate constant for 

signal decay, and fg  is the gain constant for an auto-regulatory feedback term that drives the 

CBF back to its baseline value.  The flow-inducing signal then leads to an increase in CBF 

through the relation sf =&  where f denotes CBF normalized by its baseline value. The form of 

the model was motivated by observations of an approximate linearity of the CBF response to 

stimulus (Miller et al., 2001), reports of post undershoots in CBF responses (Irikura et al., 

1994), and the existence of vasomotion with a period of about 10 seconds (Mayhew et al., 

1996).  The two first order equations may be combined to yield the overall second order 
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equation for flow )()1( tufgfkf fs ε=−++ &&& . The properties of the equation can be 

understood by considering the impulse response ttktf s 0

0

sin)2/exp(1)( ω
ω
ε

δ −+=  where 

42

0 sf kg −=ω  is the resonant frequency. As the impulse response is a constant term plus a 

damped sinusoid, the speed of the response depends on the resonant frequency.  In order for the 

baseline CBF level to speed up the impulse response in this model, the primary effect of a 

decrease in CBF must be to increase the resonant frequency, either through decreasing the 

decay constant sk  or increasing the feedback gain constant fg . Within the framework of the 

model, however, there is not a clear link between the values of the decay and gain constants and 

the baseline vascular state.   

In this paper, we present an extension of Friston’s model that explicitly models the 

contribution of the baseline vascular state to the dynamic CBF response.  We refer to the 

modified model as the arteriolar compliance model because it models the link between neural 

activity and changes in the compliance of the arterioles. The motivation and basic form of the 

model are presented in the Theory section.  Numerical simulations are then used to demonstrate 

the predictive capabilities of the model.   

 

2.3 Theory  

2.3.1 Nonlinear dependence of radius on compliance 

The arteriolar compliance model is based on the following simplified picture. An arteriole 

experiences both intravascular pressure from the flowing blood and extravascular forces from 

the surrounding tissue and extracellular fluid.  The intravascular and extravascular forces are 

balanced by circumferential stresses within the arteriole wall. There is an active stress 

component due to the vascular smooth muscle and a passive stress component due to connective 
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tissues. The active and passive components act as two springs in parallel and together determine 

the overall compliance of the arteriole.  With the assumption of constant external forces, the 

radius of the arteriole increases with its overall compliance. By analogy with a spring, the more 

compliant the arteriole, the more the vessel wall can stretch under a constant force.   

Over the operating range of the arteriole, the relative contributions of the active and passive 

components to the overall compliance vary.  Near or below the normal operating radius of the 

arteriole, most of the total stress is taken up by the muscle, so that the muscle compliance 

determines the overall compliance.  As the radius saturates towards its maximum value, the 

muscle stress decreases while the passive stress increases exponentially (Davis et al., 1989; 

Lash et al., 1991). At these larger radii, most of the stress is taken up by the passive component, 

which then determines the overall compliance. Thus, there is a nonlinear dependence of total 

compliance on muscular compliance. This results in a nonlinear dependence of radius on 

muscular compliance that plays a critical part in explaining the dependence of the CBF 

dynamics on baseline CBF. Examples of the relations between stress, compliance and radius are 

shown in Figures 1a and 1b for a 35 micron radius arteriole where the fraction λ  of the total 

stress at rest taken up by the passive component is equal to 0.15 and the maximum radius is 1.3 

times the resting radius, consistent with typical values from (Davis et al., 1989; Lash et al., 

1991).  

 In the Appendix, we formalize the above arguments and derive an expression (Eqn A10) 

for the nonlinear relation between the arteriolar radius and smooth muscle compliance.  An 

example of this relation is shown in Figure 1c.  

2.3.2 Link between neural activity and compliance 

Although the precise mechanisms of neurovascular coupling are still poorly understood, it is 

generally thought that neural activity leads to an increase in the concentration of a number of 

vasoactive agents, such as nitric oxide, potassium ions, and adenosine (Attwell et al., 2002; 
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D'Esposito et al., 2003; Iadecola, 2004). These agents affect muscular compliance by 

modulating the phosphorylation of myosin light chains (MLC) in the vascular smooth muscle 

cells (VSMC) either directly (e.g. through cyclic adenosine monophosphate (cAMP)) or through 

changes in the intracellular concentration of calcium (Davis et al., 1999; Murray, 1990; West et 

al., 2003).  The kinetics of the pathway from neural activity to compliance are complex and still 

an area of active investigation, and so our approach is to construct the simplest model consistent 

with the experimental data.  This is a second order model consisting of a first stage relating 

neural activity to changes in a vasoactive signal and a second stage relating this signal to 

changes in muscular compliance.  

The first stage approximates the complex path from neural activity to intermediate agents, 

such as nitric oxide and adenosine, onto final signaling agents, such as calcium, cAMP, cyclic 

guanine monophosphate (cGMP) and associated protein kinases (Davis et al., 1999; Murray, 

1990; Somlyo et al., 1994; West et al., 2003).  We lump the effects of the various vasodilatory 

and vasoconstrictive agents into a single vasoactive signal s, and adopt the first order form of 

Friston’s model to approximate the relation between neural activity and the change in the signal 

s as  

    )1()( −−−= γε rgsktus fs
&     [1]  

with  the flow feedback term rewritten in terms of the normalized radius 0/ RRr =  where 0R  

is the baseline radius and the exponent γ  is 2 for plug flow and 4 for laminar flow.  Blood flow 

in arterioles is well described by a laminar flow model, whereas blood flow in capillaries can 

vary between plug and laminar flow depending on the length of the vessel and the relative 

distribution and deformation of red blood cells (Fung, 1997). The feedback term models 

mechanisms that attempt to drive the system back to its baseline state, such as the action of 

stretch-mediated receptors in the vessel wall leading to an increase in the influx of calcium into 
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the VSMC (Davis et al., 1999; Martinez-Lemus et al., 2003). It is important to note that at rest 

the vasoactive signal s is equal to zero, reflecting the balance between competing vasodilatory 

and vasoconstrictive signals.  At the onset of activation, the concentration of vasodilatory agents 

(e.g. nitric oxide and cGMP) increases, leading to an increase in s.  As the flow increases, the 

vasoconstrictive effects (e.g. influx of calcium) rise due to the feedback term and eventually 

balance the vasodilatory effects, so that s decreases.  In the case of sustained activation this 

leads to a new steady state with s again equal to zero.  Upon the cessation of activation, the 

vasoactive signal decreases, becoming initially negative as the vasodilatory effects decrease, 

before increasing back to zero when the vessel has returned to its baseline radius. Examples of 

these dynamics are shown in Figure 2a.  

In the second stage, an increase in s decreases the concentration of phosphorylated MLC, 

leading to a decrease in active muscle stress (Yang et al., 2003) and hence an increase in muscle 

compliance. Approximating this with first order kinetics yields the relation  

    scM =&      [2] 

where 0,/ MMM CCc =  denotes normalized compliance with baseline value 0,MC .  Combining 

Eqns 1 and 2 yields  

    ( ) )(1)( tucrgckc MfMsM εγ =−++ &&&    [3] 

where the notation )( Mcr  indicates that normalized radius is a function of normalized muscle 

compliance.  

2.3.3 Properties of the compliance model 

The model presented above is clearly a simplified view of the underlying mechanisms.  The 

question is whether such a simple model can explain the observed changes in the HDR with 

aging and induced changes in baseline CBF.  Because of the nonlinear nature of the model, its 
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properties are most readily explored using numerical simulations as described in the Methods 

and Results sections.  However, we can gain useful insight into the model dynamics by 

linearizing about the equilibrium point 1=Mc  (Wilson, 1999).  To facilitate this process, we 

first approximate the nonlinear relation between radius and muscular compliance by the 

exponential function 

    ( )( )MCaaRR 21max exp1 −−≈    [4] 

where maxR  is the maximum radius and 1a  and 2a are constants obtained by fits to the 

nonlinear relation.  An example of this approximation is shown in Figure 1c.  Substitution of 

this approximation into Eqn 3 yields the nonlinear second order differential equation 

( )( ) )(1/)exp(1 0max0,21 tuRRcCaagckc MMfMsM εγγγ =−−−++ &&&   [5]  

Linearization about the equilibrium point, then leads to the second order linear differential 

equation  

  ( ) )(1)exp( 0,20,

1

0max21 tucCaCRRaagckc MMMfMsM εγ γ =−−++ −
&&&  [6] 

The effective feedback gain and impulse response associated with the linear equation are  

)exp( 0,20,

1

0max21 MMfeff CaCRRaagg −= −γγ   and  [7] 

ttktc effs

eff

M ω
ω
ε

δ
sin)2/exp(1)(, −+=    [8] 

respectively, with resonant frequency 42

seffeff kg −=ω .  With hypocapnia both 0R  and 

0,MC  decrease with baseline CBF, so the feedback gain and resonant frequency increase as 

baseline CBF decreases.   As a result, the linearized equation exhibits the property that the 

dynamics of the impulse response speed up with a hypocapnia-induced decrease in baseline 

CBF. The importance of the nonlinear relation between radius and compliance can be 
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appreciated by considering a linear relation of the form 21 bCbR M += .  With the linear form, 

the effective gain is ( )0,211 Mfeff Cbbbgg += γ , which decreases with lower values of 

baseline muscular compliance and CBF.  

With age-related reductions in CBF and vascular compliance, the maximal radius maxR , 

initial radius 0R  and baseline total compliance all decrease, reflecting an increase in the passive 

stress fraction (Hajdu et al., 1990).   With these changes, we find empirically that the constant 

terms 1a  and 2a  also decrease (e.g. calculations used for Fig. 3).  This leads to a decrease in the 

feedback gain, because the term 0,max21 MCRaa
γ

 tends to decrease more quickly than the term 

( )0,2

1

0 exp MCaR −−
 increases.  

The steady-state response of the compliance model can be obtained by setting the 

derivatives in Eqn 3 equal to zero and keeping in mind the saturation of the radius.  The steady-

state fractional change in CBF is then given by  

( )
( )



−

≤+
=−

otherwiseRR

RguRforgu
f ff
SS

1

/1 /
1

0max

max

/1

0

γ

γεε
   [9] 

where the subscript SS denotes steady-state. Thus, the model predicts that the fractional change 

in CBF is linearly related to the neural activity when the operating range of the vessel is such 

that its vessel radius is always less than the maximal radius. If the baseline CBF is greatly 

elevated, the fractional change in CBF can be limited by the inability of the arteriole to expand 

beyond its maximum radius.  

2.3.4 Balloon Model 

The compliance model provides the link between neural activity and CBF. The BOLD 

response depends not only on dynamic changes in CBF but also on changes in cerebral blood 

volume (CBV) and the cerebral metabolic rate of oxygen (CMRO2).  We use the balloon model 
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with viscoelastic terms to model the dynamic relation between CBF, CBV, and CMRO2 and to 

determine the total volume of deoxyhemoglobin and its impact on the magnetic resonance 

signal (Buxton et al., 1998; Obata et al., 2004)}.  A summary of the form of the balloon model 

used in this paper is provided in the Appendix. 

2.4 Methods  

2.4.1 Modeling of carbon dioxide experiments 

Numerical simulations were used to test the predictive capability of the compliance model. 

To demonstrate the effects of baseline CBF changes, we modeled the carbon dioxide 

experiments described in (Cohen et al., 2002). The results of that study show good qualitative 

agreement with those of a similar human study by (Kemna et al., 2001) and  an animal study by 

(Matsuura et al., 2000).   We assumed normocapnic parameter values for baseline venous 

volume fraction, oxygen extraction fraction, and Grubb’s law constant of  025.00 =V , 

4.00 =E , and 38.0=α , respectively (An et al., 2002; Grubb et al., 1974).  The normocapnic 

transit time was calculated from the central volume principle, CBFV00 =τ  (Stewart, 1894) 

assuming an average baseline CBF of 60 ml/min-100ml of tissue (equivalent to a flow rate of 

0.01 s-1) (An et al., 2002; Obata et al., 2004).  The coupling constant (defined in Eqn A14) 

between the fractional change in CBF and the fractional change in CMRO2  was assumed to be 

3=n  across all levels of the partial pressure of carbon dioxide (PaCO2) (Davis et al., 1998; 

Hoge et al., 1999; Kastrup et al., 2002).  We also assumed that the baseline rate of oxygen 

metabolism CMRO2,0 did not vary with PaCO2 (Hoge et al. 1999).  In addition, we assumed that 

the intravascular pressure, Grubb’s law constant, and flow exponent ( 4=γ  corresponding to 

laminar flow) did not vary across conditions (summarized in Table 1). 
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To determine the nonlinear relationship between arteriolar radius and the muscular 

compliance (Eqn A10),  we assumed an intravascular pressure of 45 mmHg with a normocapnic 

baseline arteriole radius and wall thickness of 35 and 7 microns, respectively  (Fung, 1997). A 

reference radius, required for the definition of the circumferential strain, was selected to be half 

of the resting radius. The fraction λ of stress in the passive element at the resting radius was set 

to 0.15.  It is important to note that in our model we assume that the relation between radius and 

muscular compliance is determined by the normocapnic parameters, with changes in carbon 

dioxide level leading to different initial starting points on this operating curve.  

Based on previous studies relating PaCO2 to baseline CBF, the baseline CBF values under 

hypercapnia and hypocapnia were estimated to be 130% and 80%, respectively, of the 

normocapnic baseline value (Ito et al., 2003; Rostrup et al., 2002).  For each level of PaCO2, the 

following model parameters were adjusted from their normocapnic value to reflect the change 

in baseline CBF: initial radius 0R , initial wall thickness 0h ,  baseline blood volume fraction 

0V , baseline  oxygen extraction fraction 0E , baseline transit time τ 0, baseline muscular 

compliance 0,MC , and baseline total compliance 0,TOTC .  The values of the adjusted parameters 

and details of the adjustment process are provided in Table 2.  BOLD signal parameters for each 

PaCO2 level were then determined from the adjusted values using equations presented in the 

balloon model appendix section.  

Model simulations utilized the full form of the non-linear relation between compliance and 

radius, as described by Eqn A10.  We constructed a lookup table to relate radius to compliance 

because of difficulty in inverting the closed form relation. The table was constructed with a 

radius step size of 0.01 micron and linear interpolation was used for values between steps.  

Simulation of the dynamic equations utilized a central Euler approximation of the coupled 

differential equations with a time step of 0.01 seconds. 
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In fitting the model to the carbon dioxide data, the model parameters discussed above and 

summarized in Tables 1 and 2 were treated as constants, while the following parameters were 

treated as unknowns:  neuronal efficacy ε , signal decay constant sk ,  signal feedback constant 

fg , normalized maximum radius nRRr maxmax =  where nR  is the normal operating radius 

corresponding to the normocapnic state, and viscoelastic time constants +τ and −τ .  The 

unknown parameters were constrained to be the same across the different carbon dioxide levels.  

Estimation of the unknown model parameters consisted of a two-step process. In the first step,  

model responses were generated over a coarse grid of parameter values with the range for each 

parameter shown in Table 3.  The mean-squared error was then calculated between the data and 

the model responses, with the error at each level of PaCO2 normalized by the power of the 

response.  The parameter values that minimized the normalized mean-squared error summed 

over all levels were then used as initial estimates for the second step in which a constrained 

descent-based algorithm (fmincon function in MATLAB, Mathworks Inc., Natick, MA) was 

employed to obtain the final parameter estimates.  

2.4.2 Modeling of aging effects 

To model the effects of an age-related reduction in vascular compliance, we set the model 

parameters for the young response equal to those of the normocapnic condition described in the 

previous section.  For the aged response, we assumed a decrease of 20 percent in the baseline 

CBF and increased the fraction λ  of passive stress at rest from 0.15 to 0.25 of the total stress to 

reflect the reduction in the elasticity of the arteriolar wall resulting from the increase in the less 

distensible collagen and basement membrane components (Hajdu et al., 1990; Riddle et al., 

2003).  Initial radius 0R , baseline blood volume fraction 0V , and baseline transit time 0τ  were 

adjusted to reflect the change in baseline CBF as described in Table 2.  The baseline oxygen 
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extraction fraction 0E  was held constant with age, consistent with studies showing that the 

baseline rate of oxygen metabolism CMRO2,0  mirrors the age-related CBF decrease (Leenders 

et al., 1990; Pantano et al., 1984). The coupling constant between changes in CBF and CMRO2 

was  assumed to be independent of age.  The wall thickness was set to 20% of the resting radius, 

reflecting the assumption that the ratio of wall thickness to radius does not change with age.  As 

shown in Figure 3a, these parameter changes result in an upward and leftward shift of the total 

stress versus radius curve, as compared to the young curve. Reflecting this shift, the baseline 

total compliance 0,TOTC exhibits an age-related decrease (see Table 2).   The baseline muscular 

compliance 0,MC , however, shows an age-related increase since the muscle component 

accounts for a smaller fraction of the total stress in the aged state as compared to the young 

state. The model simulations for the aged state were performed using these adjusted parameters 

and the estimated model parameters obtained from the carbon dioxide data. In other words, it 

was assumed that the neuronal efficacy ε , signal decay constant k
s
,  signal feedback constant 

fg , normalized maximum radius nRRr maxmax =  where the normal operating radius nR  is 

equal to the age-adjusted 0R  , and viscoelastic time constants +τ and −τ  did not change with 

age.  

 

2.5 Results 

As shown in Figure 2d, the simulated BOLD responses show good agreement with the data 

from the carbon dioxide experiments. Correlation of the model responses with the data yielded a 

correlation coefficient of 0.99. With hypercapnia the overall BOLD response is slowed,  

exhibiting an increase in the temporal width, a decrease in the peak amplitude, a reduction in the 

post-stimulus undershoot, and an increase in the rise time with respect to the normocapnic 
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response.  In contrast, hypocapnia leads to a decrease in the temporal width, an increase in the 

peak amplitude, and a decrease in the rise time.  The model responses underestimate the 

amplitudes of both the peak of the response and the post-undershoot response for the 

normocapnic data.  This partly reflects the fact that the viscoelastic time constants were 

maintained constant across conditions.  

The compliance model parameters describing neuronal efficacy ε , signal decay constant k
s
, 

and  flow dependent feedback gain fg  were estimated to be 0.57 s-2, 1.38 s-1, and 0.36 s-2, 

respectively. These values are similar to the corresponding average values of 0.54 s-2, 0.65 s-1, 

and 0.41 s-2 reported for the linear feedback model in (Friston et al., 2000). The balloon model 

viscoelastic time constants were found to be 0.43 s during inflation and 11.59 s during deflation. 

The normalized maximum radius was estimated to be 1.30.   

It is important to stress that the model responses were obtained with the signal decay and 

feedback gain parameters held constant across the levels of carbon dioxide. Thus, the speeding 

up or slowing down of the response was due primarily to the change in baseline compliance, 

which then modulates the effective feedback gain (see Theory section).  This is in marked 

contrast with the linear feedback model, which, as discussed in the Introduction, requires a 

change in either the signal decay or feedback gain parameter in order to slow down or speed up 

the response in a manner consistent with the experimental data.   In addition, although the 

parameters estimated for the compliance model show good agreement with those previously 

reported for the linear feedback model, these models are not equivalent, even for the 

normocapnic state. The feedback term in the compliance model exhibits a nonlinear and 

dynamic dependence on CBF,  while the feedback term in the linear feedback model is assumed 

to be a constant.  

A detailed examination of the various responses in Figure 2 is useful for understanding the 

dependence on baseline CBF.  As shown in Figure 2a, the initial slopes of the vasoactive signal 
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responses are independent of the baseline state, reflecting the fact that the signal decay and flow 

feedback terms in Eqn 1 are initially small so that the time derivative of the vasoactive signal is 

proportional to neural activity.  Similarly, the initial slopes of the   normalized muscle 

compliance curves are independent of the baseline state.  In contrast, the slopes of the 

normalized CBF and BOLD responses in Figure 2c and 2d, respectively, exhibit a baseline 

dependence that reflects the non-linear relation between the radius and smooth muscle 

compliance described by equation A10.  To better understand this dependence, we consider the 

derivative MdCdR /  of radius with respect to muscular compliance.  Due to the nonlinear 

relation between radius and compliance, this derivative also exhibits a nonlinear dependence on 

muscular compliance, as shown in Figure 1d.    At lower baseline muscular compliance values, 

corresponding to lower baseline CBF  with hypocapnia, MdCdR / is elevated with respect to 

the normocapnic condition. Conversely, at higher baseline muscular compliance values, 

corresponding to elevated baseline CBF with hypercapnia, MdCdR / is reduced.  As a result, 

the same fractional change in muscular compliance under hypocapnia will result in a larger 

fractional changes in radius and CBF as compared to the normocapnic condition, while under 

hypercapnia the percent CBF change is reduced.   

 After its initial rise, the vasoactive signal decreases more quickly under hypocapnia and 

more slowly under hypercapnia. In the hypocapnic condition, the increased fractional change in 

CBF leads to a larger flow dependent feedback term that drives the vasoactive signal back to 

zero more quickly.  Referring back to the insight gained from the linearization analysis, we also 

note that the larger feedback term corresponds to a higher resonant frequency in the linearized 

form of the model.   In contrast, the feedback term is smaller under hypercapnia and the 

vasoactive signal moves more slowly toward the baseline value. Because of the slower decrease 

of the vasoactive signal, the normalized muscular compliance reaches a larger value in the 
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hypercapnic condition as compared to the normocapnic and hypocapnic states.  However, as 

shown by the curves in Figure 2c, the greater percent change in compliance does not translate 

into a larger percent change in CBF.   Instead, the hypercapnic response exhibits the smallest 

percent CBF increase, reflecting the lower value of MdCdR / .  The peak values of the 

normalized flow during normocapnia, hypocapnia, and hypercapnia are 1.95, 2.25, and 1.60, 

respectively.  For comparison, we find from equation 9 that the normocapnic and hypocapnic 

normalized steady state flows are both given by 6.21 =+ fguε  (assuming a step input u =1), 

while the hypercapnic steady-state response is given by ( ) 2.20max =γ
RR  

After the stimulus has ended, the vasoactive signal becomes negative, leading to a decrease 

in muscular compliance.   Because of the larger flow feedback term, the hypocapnic vasoactive 

signal and compliance responses resolve the most quickly.  This is also reflected in the CBF and 

BOLD responses. The simulated CBF responses under normocapnia and hypocapnia exhibit a 

post-stimulus undershoot that is not observed in the slower response under hypercapnia.  The 

post-stimulus undershoot in the hypercapnic BOLD response is minimal, indicating a similarity 

between the time courses of the post-stimulus CBF and CBV responses (Buxton et al., 1998; 

Mandeville et al., 1999).   In contrast, the post-stimulus undershoots in the hypocapnic and 

normocapnic BOLD responses reflect the contributions of the CBF undershoots and the relative 

mismatch of the CBF and CBV responses.  

The stress versus radius curves for young versus aged conditions are shown in Figure 3a. 

The total stress is slightly increased in the aged condition, reflecting a reduction in the normal 

resting radius and wall thickness with intravascular pressure held constant between conditions.  

The passive stress curves exhibit an age-related shift similar to that described in (Hajdu et al., 

1990), with a smaller maximum radius and a larger fraction of passive stress in the aged state. 

The increased passive fraction makes the vessel less responsive to changes in muscular 
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compliance. This is reflected in the curves of Figure 3b showing a downward shift in the 

derivative MdCdR /  with aging.  The age-related shift results in a smaller increase in radius and 

CBF for a given increase in muscular compliance.  The smaller increase in CBF leads to a 

smaller flow-dependent feedback term and hence a slower response in the aged state.  These 

effects are reflected in the CBF responses of Figure 3c, with the aged response exhibiting a 

smaller amplitude and slower dynamics as compared to the young response.  The BOLD 

response shown in Figure 3d inherits these features. Additional numerical simulations (not 

shown), indicate that simply lowering baseline CBF without also increasing the passive stress 

fraction does not significantly slow down the responses, because this merely shifts the operating 

curve (stress vs. radius) of the arteriole as opposed to changing the shape of the curve. In 

addition, as described in the Methods section, the simulations were performed with the 

assumption that CMRO2 decreases with age so that the baseline oxygen extraction fraction 0E  

does not change with age. With the alternative assumption that CMRO2 remains constant with 

age, 0E  would increase, and the amplitude of the aged BOLD response would be greater than 

that of the model response shown.   

 

2.6 Discussion  

We have presented a nonlinear dynamic model linking changes in neural activity to changes 

in arteriolar compliance and CBF.  The compliance model may be considered an extension of 

the linear dynamic model proposed in (Friston et al., 2000).  In the present model, the 

vasoactive signal modulates arteriolar muscular compliance as opposed to directly modulating 

CBF as in the prior model. Changes in total arteriolar compliance then lead to changes in vessel 

radius and CBF.   The total compliance is modeled as the parallel combination of an active 

component representing smooth muscle and a passive component representing connective 
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tissue.   This results in a nonlinear relation between radius and smooth muscle compliance. At 

smaller radii, the total compliance is determined primarily by the smooth muscle compliance, so 

that neurally induced changes in muscle compliance lead to relatively large changes in vessel 

radius. At larger radii, the total compliance is determined primarily by the passive component so 

that changes in muscle compliance are less effective at modulating the vessel radius.   

Using numerical simulations, we have shown that the compliance model predicts to first 

order the observed changes in the temporal dynamics of the CBF and BOLD responses as a 

function of baseline CBF.  The model also predicts the slowing down of the responses with age-

related decreases in vascular compliance.    

Although the compliance model in its present form provides relatively good fits to 

experimental observations, it is clearly a simplification of the underlying mechanisms.  Further 

experimental and theoretical work is required to develop more accurate and complex models.  

For example, although the output of the compliance model is CBF, most of the currently 

available observations revealing baseline vascular effects use measurements of the BOLD 

response.  This is in part because of the lower signal-to-noise ratios (SNR) exhibited by present 

methods for measuring CBF, as compared to methods for measuring BOLD.   Detailed 

measurements of dynamic CBF responses as a function of baseline CBF would allow for a more 

direct validation of the compliance model.  In addition, in-vitro studies of isolated arterioles and 

in-vivo studies of CBF responses in animals, using invasive methods that cannot be applied to 

humans, would be useful for more fully revealing the mechanisms underlying the effects of the 

baseline vascular state.  

The current model employs a first stage linking neural activity to a vasoactive signal and a 

second stage linking to the vasoactive signal to changes in muscular compliance.  Further 

development of the model would lead to more accurate descriptions of the pathways in each 

stage.  For example, the first stage involves initial pathways from neural activity to intermediate 
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vasoactive agents, such as nitric oxide,  and secondary pathways from the intermediate agents to 

final signaling agents, such as calcium.  Thus, the next level of model development could entail 

modeling the first stage as the cascade of two first order systems. A recently presented 

biophysical model linking calcium to muscular compliance (Yang et al., 2003; Yang et al., 

2003) may provide useful insights for modifying the second stage of the compliance model.  

This model integrates a large body of current knowledge about the electrochemistry and chemo-

mechanics of the vascular smooth muscle cell, and has been shown to fit experimental 

measurements of the myogenic response in isolated cerebral arterioles.  In its current state the 

model is probably too complex (23 state variables and roughly 50 assumed constants) to 

robustly model dynamic responses.  However, numerical simulations of the biophysical model 

could be useful in exploring further developments of the second stage of the compliance model.  

For example, the present model might be expanded to incorporate a description of the 

phosphorylation of the myosin light chains.   

While the compliance model is the primary focus of this paper, the balloon model plays an 

important role in testing the predictions of the compliance model with experimental BOLD 

observations.  Although as discussed above, CBF measurements are preferable for direct 

validation of the compliance model,  BOLD measurements are likely to play an important role 

in further development of the model, due to their  better SNR and temporal resolution.  In 

addition, the widespread use of BOLD measurements in fMRI studies makes it critical to 

understand the effect of the baseline vascular state on the BOLD responses. In the current form 

of the balloon model, we have assumed a tight coupling between CBF and CMRO2  (Eqn. A14) 

and also assumed that CMRO2 does not change with carbon dioxide level. Recently,   Zheng et 

al (Zheng et al., 2002) have proposed a dynamic model  that takes into account the modulatory 

effect of tissue oxygenation on the coupling between CBF and oxygen delivery.  The model 

appears to yield a better prediction of the dynamic CMRO2 response to neural stimulus and also 
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provides a prediction of the observed CMRO2 response in anesthetized rats to hypercapnia.  The 

incorporation of the dynamic oxygen delivery model may therefore improve the predictive 

capability of the combined compliance and balloon model presented here. A reformulation of 

the viscoelastic properties of the balloon model may also lead to better predictions.  In fitting 

the results of the carbon dioxide experiments, we found that it was difficult to simultaneously fit 

the post-stimulus undershoot of the BOLD response under all baseline conditions (see Figure 2).  

A better fit may be achievable with a model that incorporates the effect of baseline CBV and 

venous compliance on the dynamics of the venous compartment.  

In this paper we have focused on the structure of the compliance model and its ability to 

predict the effect of the baseline vascular state on the hemodynamic response to stimulus. The 

estimation of model parameters was achieved using a two-step procedure consisting of a global 

minimization over a coarse grid followed by a conventional descent based algorithm.  This 

approach may not be optimal from the point of view of computational efficiency or robustness.  

Friston et al (Friston, 2002; Friston et al., 2003) have applied a Bayesian identification scheme 

to the combination of the second order linear feedback model (described in the introduction) 

with the balloon model.  This scheme utilizes the expectation-maximization algorithm for 

estimating the conditional or posterior distribution of the model parameters. The inclusion of 

priors in the estimation procedure enables robust and rapid convergence of the estimation 

process.  In addition, the conditional densities provided by a Bayesian scheme enable inference 

about the dependencies between different model parameters. It is likely, therefore, that the 

application of a Bayesian scheme to the compliance model would improve the robustness of the 

estimation process and lead to a better understanding of the interdependence and relative 

importance of the different model parameters.  Finally, an extension of the Bayesian framework 

to examine interactions among different brain regions has recently been presented in the form of 

dynamic causal models (Friston et al. 2003).  Incorporation of the compliance model into the 
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current dynamic causal model structure could prove useful in examining the effect of the 

baseline vascular state on the effective connectivity between brain areas.  
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2.7 Appendix  

2.7.1 Radius and Muscular Compliance 

In this section we show that there is a nonlinear relation between arteriolar radius and the 

compliance of the vascular smooth muscle.  We begin with the force balance equation for a 

cylindrical thick walled vessel  

hPhRRP VPMei )()( σσσ ++=+−     [A1] 

where iP  and eP  are the intravascular and extravascular pressures, respectively; Mσ , Pσ , and 

vσ  are muscular, passive, and  viscoelastic stress terms, respectively; and h is the wall 

thickness (Ursino, 1991).   We assume that the vessel wall is incompressible so that the wall 

thickness satisfies the constraint  

2

0

2 2 oo hhRRRh +++−=      [A2] 

where 0R  and 0h  are the initial values of the inner radius and wall thickness. With this 

relationship the vessel wall gets thinner as the radius increases. To obtain a steady-state relation 

between compliance and radius, we may neglect the viscoelastic stress term, which is 

proportional to the rate of change of the radius. Because of the lack of data on the extravascular 

pressure exerted by the surrounding tissue, we neglect this term to simplify our presentation.  

Choosing a constant value for this term would not change the overall approximation that we 

derive.   

With the above assumptions the total stress can be expressed as  

R
h

Pi
MPTot =+= σσσ .    [A3]  

This is analogous to two springs acting in parallel in which the overall stress is the sum of the 

stresses in each individual element, and the individual strains are equal to the total strain. In 
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contrast, two springs in series would experience equal stresses and the overall strain would be 

equal to the sum of the individual strains at each spring (Fung, 1994).  

The total compliance of the arteriole is defined as  

Ref,TotTot

Tot
Tot

E
C

σσ −
=      [A4]  

where Totσ  is defined as a function of radius in  Eqn A3, Ref,Totσ  is the stress at a reference 

radius refR ; and the  Lagrangian finite strain term  is


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E  (Fung, 1993). The 

reference radius is chosen to be smaller than the lowest radius of interest so that all stresses and 

strains are positive.  Because the total stress is the sum of the passive and muscle stresses, the 

total compliance may also be expressed as the parallel combination  

MP

MP

Tot
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+
=      [A5]  

of a muscle compliance term C
M
 and passive compliance term C

P
. These are defined as  

refMM
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M

E
C
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=  , 

refPP

Tot
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E
C

,σσ −
=     [A6] 

where Ref,Mσ  and  Ref,Pσ  are the respective stresses at the reference radius and 

Ref,Ref,Ref, MPTot σσσ += . With these definitions and the relation in A3, Equations A4 and A5 

are mathematically equivalent. Note that in the parallel combination of compliances in A5, the 

smaller compliance dominates the total compliance.  This is analogous to the less compliant 

spring dominating the overall compliance when two springs are in parallel.  

From Eqns A3 and A6, we can express muscular compliance as a function of the vessel 

radius and passive stress 
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It has been shown that passive stress is well modeled as an exponential function of radius  

)exp(0, Rk PPP σσ =      [A8] 

where 0,Pσ  and 
Pk  are empirical constants (Fung, 1997). Estimation of these constants is 

based on the following observations: (a) the ratio of the stress in the elastic to the muscle 

element as a function of radius is conserved across various orders of the arteriole tree; (b) at the 

normal operating point radius  nR ,  80-90% of the total tension is within the muscle element; 

and (c) nearly all the stress is exerted by the passive element when the vessel is at its maximum 

radius maxR   (Davis et al., 1989; Lash et al., 1991). Application of the boundary conditions at 

nR  and maxR in conjunction with Eqn A3 for the total stress yields  
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where  λ  is the fraction of total stress in the passive element at nR , and nh  and maxh are the 

vessel wall thickness at nR  and maxR , respectively. Substitution of Eqn A9 into Eqn. A7 yields 

an expression for muscular compliance as a function of radius 
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Assuming an intravascular pressure of 45 mmHg with a normal operating point radius and wall 

thickness of 35 and 7 microns; respectively, we use Equation A10 to plot the relation between 
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radius and muscle compliance in Figure 1c.  Additionally, the reference radius was selected to 

be half of the resting radius with λ  and  nRRmax  set to 0.15 and 1.3, respectively.   This 

relation is fairly well approximated by the exponential form ( )mCa
eaRR 2

1max 1
−−= ,  also 

shown in the Figure 1c.   

 

2.7.2 Balloon Model 

In the balloon model with viscoelastic effects, the venous compartment is treated as a 

distensible balloon (Buxton et al., 1998).  The flow into the balloon is determined by the 

compliance model, while the flow out of the balloon is modeled as 

vvvf vout
&τα +=

1

)(     [A11] 

where v denotes the venous volume normalized by its initial value, vτ  is the viscoelastic time 

constant (equal to +τ  and −τ during inflation and deflation, respectively), and α  is an empirical 

constant that determines the steady state power law relation between flow and volume (Buxton 

et al., 1998; Grubb et al., 1974). The flow and volume dynamics follow the mass conservation 

relation   

)(0 vffv out−=&τ     [A12] 

where 0τ  is the mean transit time to traverse the venous compartment at rest.   

The equation for mass conservation of deoxyhemoglobin in the balloon is  

v

q
vf

E

EfE
fq out )(

),(

0

0
0 −=&τ   [A13] 

where q  is the total deoxyhemoglobin content normalized by its initial value, 0E  is the net 

extraction fraction of oxygen at rest, and ),( 0EfE  is the extraction fraction as a function of 

flow and 0E .  An expression for ),( 0EfE  is obtained by assuming a linear coupling  
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between the fractional change in CBF and the fractional change in CMRO2, where n is an 

empirical coupling constant and m is CMRO2 normalized by its initial value (Buxton, 2002).  

The relation between CBF and CMRO2 is CBFCECMRO A ⋅⋅=2  where AC  is the arterial 

oxygen concentration. This may be written in normalized quantities as 
f

m
EE

0
= .  

Combining this expression with Eqn A14 yields 
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which permits us to rewrite Eqn  A13 as  
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The BOLD signal change as a function of normalized volume and deoxyhemoglobin is  

[ ])1)(()1)((/ 322100 vkkqkkVSS −+−−+=∆    [A17] 

where 0V  is the resting blood volume fraction (Obata et al., 2004).  The first constant term 

TEEk 001 3.4 ν=  where TE  is the echo time of the sequence and 
-1

00 s )5.1/(3.40 B⋅=ν  is a 

magnetic field ( 0B ) dependent frequency offset.  The second constant term TEErk 002 β=  

where IE SS=β  is the intrinsic ratio of blood to tissue signals at rest and r0   is the slope of 

the intravascular relaxation rate 
*

,2 IR  versus the extraction fraction E  (Li et al., 1998). The 

blood and tissue signals are defined as )/exp( ,20,

∗−= EEE TTESS  and 

)/exp( ,20,

∗−= III TTESS , respectively, where 
*

2 IT and 
*

2ET  are the resting intravascular and 

extravascular transverse relaxation times and 0ES and EIS are the effective spin densities.  For 
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this paper we assume average values of 25,2 =∗
ET  ms and 8.12,2 =∗

IT  ms at 7 Tesla (Yacoub 

et al., 2001) and also assume that the effective spin densities are equal.  In vitro measurements 

have shown that 0r  exhibits a quadratic dependence on field strength (Silvennoinen et al., 

2003), so that we may calculate its value as a function of field strength as 

( )200 5.1/0.25 Br ⋅=  where 
-1s 0.25  is the measured in-vivo value at 1.5 T (Li et al., 1998; 

Obata et al., 2004).   Finally, the third constant term is defined as 13 −= βk . 
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2.8 Figures and Tables 

Table 2.1.  Model parameters that were held constant across all model 
simulations. 
 

Parameter  Variable 

Name 

Value 

Grubb’s Constant α 0.38 

CMRO2 and CBF Coupling Constant n 3 

Flow Exponent γ 4 

Intravascular Pressure (mmHg) Pi  45 
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Table 2.2.  Description of model parameters that were adjusted to reflect either 
carbon dioxide level-related or age-related changes in the normalized baseline 

cerebral blood flow YNCBFCBFf ,000 =  where YNCBF ,0  denotes baseline CBF 

for normocapnia in the young state.  Initial radius is 
γ/1

0,00 fRR YN=  where YNR ,0  

is the initial radius for the young normocapnic state and 4=γ  for laminar flow.  

The initial wall thicknesses 0h  for the hypocapnic and hypercapnic states were 

computed using the incompressibility constraint in Eq A2, whereas the initial wall 

thickness for the old state was assumed to be 20% of 0R . The passive stress 

fraction λ  at rest is used to generate the stress versus radius operating curves for 

the young and old states.  It therefore corresponds to the stress fraction for the 
normocapnic condition in either the young or old state.  Initial muscular compliance 

0,MC and total compliance 0,TOTC  for each state were calculated from Equations 

A5 and A10 with appropriate substitutions.  The resting venous volume fraction 0V  

was determined for each state with a Grubb’s law relation 
α
00 )025.0( fV = .  With 

the assumption of no change in baseline CMRO2 between carbon dioxide levels, the 

resting oxygen fraction 0E  for each state is 
0,00 fEE YN=   where YNE ,0  denotes 

the young normocapnic value.  Reflecting the assumed decrease in CMRO2 with 
age, the extraction fraction for the aged state is equal to that for the young 

normocapnic state.  The resting transit delay 0τ  in each state reflects the central 

volume principle 000 /CBFV=τ .  

Parameter Normocapnia/ 

Young 

Hypocapnia Hypercapnia Old 

CBF0 /CBF0,YN
 1.0 0.8 1.3 0.8 

0R (µm) 35.0 33.1 37.4 33.1 

h0
 (µm) 7.0 7.33 6.62 6.62 

λ  0.15 0.15 0.15 0.25 

CM ,0
  (1/mmHg) 0.012 0.011 0.014 0.013 

CTOT ,0
(1/mmHg) 0.00956 0.00954 0.00958 0.00856 

0V  0.025 0.023 0.028 0.023 

0E  0.4 0.5 0.31 0.4 

0τ (s) 2.5 2.87 2.13 2.87 
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Table 2.3.  Model parameters that were estimated with a least squares fit to the 
data of Cohen et al (2002). The maximum normalized radius is referenced to the 

normal operating radius R
n
, which is defined as the normocapnic radius in either 

the young or old state. Details of the fitting process are described in the Methods 
section. Note that the simulations presented in Figures 2 and 3 use the estimated 
values for all conditions (i.e. these model parameters do not vary across 
conditions). 
 

Parameter Variable 

Name 

Constrained 

Range 

Estimated 

Value 

Neuronal Efficacy (1/ s2) ε  0-1 0.57 

Decay Constant (1/s) sk  0-2 1.38 

Feedback Gain Constant (1/ s2)  fg  0-2 0.36 

Viscoelastic Time Constant-inflation  (s) τ+  0-30 0.17 

Viscoelastic Time Constant-deflation (s) −τ  0-30 11.35 

Maximum Normalized Radius Rmax /Rn
 1.2-1.30 1.30 

 



 

 
 

45 

Figure 2.1.  Mechanical properties of the arteriole. (a,b) Muscle, passive, and total stress and 
compliance versus radius.  In (b), the total compliance is the parallel combination of the passive 
and muscle compliances, with units labeled on the righthand side of the plot. (c) Radius versus 
compliance and exponential fit. (d) Derivative of radius with respect to compliance. Derivative 
of exponential fit is also shown. 



 

 
 

46 

 
Figure 2.2. Model responses under hypocapnic, normocapnic, and hypercapnic conditions. Data 
from (Cohen et al., 2002) are shown by the plus symbols in panel (d) 
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Figure 2.3. (a) Stress versus radius for young and old subject. (b) dR/dCM versus normalized 
radius (c,d) Model CBF and BOLD responses. 
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Chapter 3 
 

Caffeine Reduces the Initial Dip in the Visual BOLD 
 

Response at 3T 

 
 

3.1 Abstract 

Localized changes in oxygen consumption related to increased neural activity can result in a 

small and transient “initial dip” of the blood oxygenation level-dependent (BOLD) signal used 

in functional magnetic resonance imaging (fMRI).  The initial dip has been of great interest to 

the fMRI community because it may provide a more accurate and localized measure of neural 

activity than the conventional BOLD signal increase.  Although potentially useful as a 

technique for human brain mapping, the initial dip is not always detected and has been a source 

of some controversy.  In this study, the BOLD response to a 4-s long visual stimulus was 

measured with a 3 Tesla MRI system in 5 healthy volunteers both before and immediately after 

a 200-mg oral caffeine dose.  The caffeine dose significantly (P < 0.001) reduced or eliminated 

the initial dip in all subjects.  These findings suggest that caffeine usage may be a key factor in 

the detection of the initial dip in human fMRI studies. 
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3.2 Introduction 

The blood oxygenation level dependent signal (BOLD) used in most functional magnetic 

resonance imaging (fMRI) studies reflects local changes in deoxyhemoglobin (dHb). With 

increased neural activity, there are increases in both the rate of oxygen metabolism (CMRO2) 

and the delivery of oxygen via cerebral blood flow (CBF).  In most cases, the increase in 

oxygen delivery eventually exceeds the rate of oxygen consumption, leading to a prolonged 

decrease in dHb and an increase in the BOLD response  (Buxton et al., 1998).  This signal 

increase, referred to as the positive BOLD response, is the basis for most fMRI applications.  

However, a number of optical imaging and functional magnetic resonance imaging (fMRI) 

studies have shown that, in the first few seconds following the onset of increased neural 

activity, CMRO2 may increase more quickly than CBF, leading to an initial transient increase in 

dHb and an associated “initial dip” in the BOLD signal (Ernst et al., 1994; Hu et al., 1997; 

Malonek et al., 1996; Menon et al., 1995; Thompson et al., 2004).  In addition, it has been 

shown that the initial dip is better localized to areas of neural activity (e.g. cortical columns), as 

compared to the more diffuse positive BOLD response (Duong et al. 2000; Yacoub et al. 2001; 

Kim et al. 2000; Yacoub and Hu 2001).  These observations are consistent with a view in which 

the early portion of the BOLD signal reflects changes in dHb that are primarily localized to the 

microvasculature, whereas the later part of the BOLD signal reflects dHb changes in both the 

microvasculature and the macrovasculature, due to the draining of dHb into larger vessels 

(Duong et al. 2000; Fukuda et al. 2005; Yacoub et al. 2001).  

Although the initial dip has been observed in a number of human and animal studies 

(Duong et al., 2000; Ernst et al., 1994; Hu et al., 1997; Kim et al., 2000; Malonek et al., 1996; 

Vanzetta et al., 1999; Yacoub et al., 2001; Yacoub et al., 2001), some animal studies have found 

no evidence for an initial dip (Lindauer et al., 2001; Mandeville et al., 1999; Marota et al., 1999; 
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Silva et al., 2000).  It has been suggested that differences in imaging methodology, brain 

regions, animal species, and anesthesia are responsible for the conflicting observations in 

animal studies (Ances, 2004; Buxton, 2001).   One human fMRI study suggested that the initial 

dip may be an experimental artifact that arises when stimuli are too closely spaced in time 

(Fransson et al., 1998), but a subsequent study found an initial dip even with wider spacings 

(Yacoub et al., 1999).  While there do not appear to be additional human fMRI studies that 

explicitly focus on the absence of the initial dip, there are many studies of the dynamics of the 

BOLD response that either do not find or simply do not mention the initial dip.  For example, 

the initial dip was not observed in studies examining the effects of carbon dioxide on the BOLD 

response (Cohen et al., 2002; Kemna et al., 2001).  Cohen et al attributed the lack of detection 

to differences in experimental methodology, which can be an important factor given the 

relatively small amplitude of the initial dip.   

In addition to methodological differences, variations in the baseline vascular state due to 

factors such as pharmacological agents, disease, and age have been shown to alter the dynamics 

of the BOLD response and may therefore affect the detection of the initial dip in humans 

(D'Esposito et al., 2003).  As an example, the carbon dioxide studies mentioned above found 

that vasodilation caused by hypercapnia significantly slowed down the dynamics of the BOLD 

response, while vasoconstriction caused by hypocapnia led to a quickening of the response.  In a 

recent study using a 4 Tesla MRI system, we showed that caffeine, a known vasoconstrictor, led 

to a quickening of the visual BOLD response in a manner similar to that observed with 

hypocapnia (Liu et al., 2004).  Due to technical considerations (e.g. scanner instabilities), the 

initial dip was not easily detected in that study.  In the present study, performed on a 3 Tesla 

MRI system, we demonstrate robust detection of the initial dip and show that a 200 mg caffeine 

dose can significantly reduce the initial dip.   
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3.3 Methods 

3.3.1 Experimental Protocol 

Five healthy subjects (ages 23 to 39) participated in the study after giving informed consent.  

Each subject refrained from ingesting any food or drink containing caffeine for at least 12 hours 

prior to the experiment.  The estimated daily caffeine usage of the subjects based on self-reports 

of coffee, tea, and caffeinated soda consumption is summarized in Table 1.  The assumed 

caffeine contents for an 8-oz coffee, tea, and soda were 100 mg, 40 mg, and 20 mg, respectively 

(Fredholm et al., 1999).  Each experiment lasted approximately 3 hours and consisted of a 1-

hour pre-dose imaging session followed by a 1-hour post-dose session.  In addition to the actual 

time spent on imaging, the length of each session included time for preparation (e.g. ensuring 

that physiological monitoring equipment was working properly), parameter set-up and 

execution of prescan routines (as necessary), and instruction of the subject prior to each scan.  

Between sessions the subject ingested an over-the-counter tablet containing 200-mg of caffeine 

and rested outside the scanner for approximately 30 minutes. The first functional run began 

approximately 45 minutes post ingestion. This interval was chosen based on studies showing 

that the absorption of caffeine from the gastrointestinal tract reaches 99% about 45 minutes after 

ingestion, with a half-life of 2.5 to 4.5 hours (Fredholm et al., 1999).  

During both the pre-dose and post-dose imaging sessions, each subject viewed two repeats 

of a periodic single trial visual stimulus consisting of a 20-second initial “off” period followed 

by 5 cycles of a 4 second “on” period and a 40 second “off” period.  During the “on” periods, a 

full-field, full contrast radial 8 Hz flickering checkerboard was displayed, while the “off” 

periods consisted of a gray background of luminance equal to the average luminance of the “on” 

period.  Three of the five subjects viewed two additional repeats of the periodic single trial 

design.  As described below, these were acquired with a smaller imaging slice thickness than 
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the first two repeats.  In addition, a resting-state scan, during which the subject was presented 

with the “off” condition for 3 minutes, was performed and used to characterize the resting CBF 

level.      

3.3.2 Imaging Protocol 

Imaging data were collected on a GE Signa Excite 3 Tesla whole body system with a body 

transmit coil and an eight channel receive coil.  Laser alignment was used to landmark the 

subject and minimize differences in head position between sessions.  During the resting-state 

scan, data were acquired with a PICORE QUIPPS II (Wong et al., 1998) arterial spin labeling 

(ASL) sequence (TR= 2s , TI1/TI2= 600/1500ms, 10 cm tag thickness, and a 1 cm tag-slice 

gap) with a dual echo spiral readout (TE1/TE2=9.1/30 ms, FOV=24 cm, 64x64 matrix, and a 

flip angle= 90 degrees).  Small bipolar crusher gradients were included to remove signal from 

large vessels (b=2 s/mm2). Three oblique axial 8 mm slices were prescribed about the calcarine 

sulcus for this ASL run.  During the periodic single trial runs, BOLD-weighted images were 

acquired with a spiral readout (TE=25ms, TR=500 ms, FOV=24cm, 64x64 matrix, and a flip-

angle of 45 degrees).  In all five subjects, these BOLD runs used the same slice prescription as 

the ASL runs (e.g. three 8 mm slices). The choice of the 8mm slice thickness reflects the fact 

that the experiments on two of the subjects (labeled as Subjects 4 and 5 in Results) were not 

originally intended to examine the initial dip.  To determine whether there was an effect of the 

large slice thickness, the experiments in the three remaining subjects (labeled 1 to 3 in Results) 

included two additional BOLD-weighted runs using the periodic single trial design and acquired 

with six oblique 4 mm slices covering the same volume as the three 8 mm slices. For all 

periodic single trials acquired at either slice thickness, 480 volumes at a TR of 500 ms were 

acquired. 
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A high resolution structural scan was acquired with a magnetization prepared 3D fast 

spoiled gradient acquisition in the steady state (FSPGR) sequence (TI 450ms, TR 7.9ms, TE 

3.1ms, 12 degree flip angle, FOV 25x25x16 cm, matrix 256x256x124).  In addition, a 

cerebrospinal fluid (CSF) reference scan and a minimum contrast scan were acquired for use in 

CBF quantification. The CSF scan consisted of a single-echo, single repetition scan acquired at 

full relaxation and echo time equal to 9.1 ms, while the minimal contrast scan was acquired at 

TR=2 sec and TE=11 ms.  Both scans used the same in-plane parameters as the ASL scans, but 

the number of slices was increased  to cover the lateral ventricles.  

Cardiac pulse and respiratory effort data were monitored using a pulse oximeter (InVivo) 

and a respiratory effort transducer (BIOPAC), respectively.  The pulse oximeter was placed on 

the subject's right index finger, and the respiratory effort belt was placed around the subject's 

abdomen.  Physiological data were sampled at 40 samples per second using a multi-channel 

data acquisition board (National Instruments). 

3.3.3 Data Analysis 

All images were coregistered using AFNI software (Cox, 1996). The structural scan from 

each post-dose session was aligned to the structural scan of its respective pre-dose session, and 

the rotation and shift matrix used for this alignment was then applied to the post-dose BOLD 

and ASL images.  An image-based retrospective correction method RETROICOR (Glover et 

al., 2000; Restom et al., 2004) was used to reduce physiological noise due to cardiac and 

respiratory fluctuations.  For each subject, a mean ASL image was formed from the average 

difference of the control and tag images from the resting-state scan data.  This mean ASL image 

was then corrected for coil inhomogeneities using the minimum contrast image (Wang et al., 

2005) and converted to physiological units using the CSF image as a reference signal (Chalela 

et al., 2000). 
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For each slice thickness, average BOLD time series were formed from the data (after 

physiological noise correction) for the two runs acquired at that thickness.  All subsequent 

analyses were performed separately for the average BOLD time series. Correlation analysis was 

performed using a positive BOLD reference function formed by convolving the periodic single 

trial stimulus pattern with a gamma density function of the form 

h(t) = (τn!)−1 t −∆t( )/τ( )n exp − t −∆t( )/τ( ) for t ≥ ∆t  and 0 otherwise,  with τ = 1.2, n = 3 

and ∆t =1.  A constant term and linear trend term were used as nuisance terms in the correlation 

analysis.   

Functional regions of interest (ROI) were defined for the pre-dose (ROIpre) and post-dose 

(ROIpost) data using a correlation coefficient threshold of 0.40 based on the positive BOLD 

response.  A joint functional ROI (ROIjoint) was then formed from the intersection of  ROIpre  

and ROIpost, using a spatial clustering criterion (one nearest neighbor) to eliminate isolated 

voxels. The area of the first 2.5 seconds of the average BOLD response, referred to as the initial 

dip area, was computed for each voxel within ROIjoint, with a negative area corresponding to the 

presence of an initial dip. Voxels within ROIjoint  displaying an initial dip in the pre-dose data 

were then used to define an initial dip ROI, denoted as ROIdip.  In other words, ROIdip  

encompasses all voxels in ROIjoint that display an initial dip in the pre-dose periodic BOLD 

response.  

Note that for subjects with both 4 mm and 8 mm slice thickness data, a separate ROIdip was 

defined for each slice thickness.  For each voxel within  ROIdip the average BOLD response was 

formed by averaging across cycles of the average BOLD time series. For each subject, a mean 

BOLD response was then computed for  ROIdip and a paired t-test (two-tailed) was used to 

compare the pre-dose and post-dose initial dip areas across all voxels within  ROIdip.   In 

addition, the average CBF was computed for  ROIdip, and a paired t-test (two-tailed) was used to 

compare the pre-dose and post-dose CBF levels across voxels in ROIdip .   
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An additional correlation analysis was performed to show localization of the initial dip, but 

was not used for further statistical comparisons. The initial dip reference function was a 

symmetric triangle that started at 0.5 seconds, peaked at 1.5 seconds with a negative amplitude 

of -0.5, and returned to zero at 2.5 seconds (total duration = 2 seconds).   A spatial clustering 

criterion (one nearest neighbor) was used to eliminate isolated voxels. 

3.4 Results 

The group average pre-dose (blue) and post-dose (red) BOLD responses (N = 5) from the 

8mm slice thickness data are shown in the top row of Figure 1, with panel (b) depicting a 

magnified view of the initial response.  Consistent with prior findings (Liu et al., 2004), the 

administration of caffeine speeds up the BOLD response with a decrease in peak-time from 8.45 

s to 7.45 s and full-width half maximum from 6.95 s to 6.1 s.  The peak amplitude increased 

from 1.83% to 2.16% following caffeine ingestion.  In the initial portion of the pre-dose 

response, the response dips after the onset of the visual stimulus, reaching a minimum value of 

–0.16% at 1.5 seconds, at which time the response begins to recover and becomes positive at 2.5 

seconds. In contrast to the pre-dose initial response, the post-dose response increases after the 

onset of stimulus.  Group average responses from the 4mm slice thickness data (N = 3 subjects) 

are shown in the bottom row of Figure 1.  The results are similar to those observed for the 8 mm 

slice thickness data, with the initial dip clearly visible in the pre-dose response and reduced in 

the post-dose response.  Following the initial onset of visual stimulation, the pre-dose response 

dips to a minimum value of –0.24% at 1.5 s before becoming positive at 2.5 s.  

Figure 2 shows the post-dose (y-axis)  versus pre-dose (x-axis) initial dip areas from the 

ROIdip for each subject.  Panels a-c and d-h correspond to the data acquired at 4mm and 8mm 

slice thicknesses, respectively.  A significant (p < 8.4e-4) reduction of the initial dip (e.g. more 

positive initial dip area) was observed for each subject.  Figure 3 shows magnified views of the 



 

 
 

61 

pre-dose (blue) and post-dose (red)  average initial responses for each subject.  Panels a-c show 

the responses from the 4mm slice thickness data while panels d-h are for the 8mm slice 

thickness data. The reduction of the initial dip by caffeine is clearly present in each subject’s 

responses.  

Figure 4 compares the pre-dose and post-dose spatial localization of the initial dip and the 

positive BOLD response for a representative slice (4mm thick)  from  subject 1.  Panels a) and 

c) show the spatial extent of the initial dip in the pre-dose and post-dose conditions, 

respectively, with the colorbar indicating the scale of the correlation coefficient calculated with 

the initial dip reference function.  Consistent with the above observations of a significant 

reduction of the initial dip with caffeine, the spatial extent of the initial dip is greatly diminished 

in the post-dose map.  Panels b) and d) are positive BOLD activation maps for the pre-dose and 

post-dose conditions, respectively, with the colorbar indicating the scale of the correlation 

coefficients obtained with the positive BOLD reference function.  In comparison to the initial 

dip spatial maps the positive BOLD maps exhibit a wider spread of activation across the 

occipital cortex, consistent with the findings of prior studies (Yacoub and Hu 2001 and Yacoub 

et al. 2001).  Spatial localization maps from the other subjects showed similar behavior.  

Table 1 shows the average pre-dose and post-dose CBF values for each subject, along with 

p-values obtained with two-tailed paired t-tests.  The mean and standard deviations of the CBF 

were computed using voxels within each subject’s ROIdip.  For each subject, there is a 

significant reduction (p < 1.7e-11) in CBF associated with the caffeine dose, with the percent 

decrease in CBF ranging from 30 to 51% across subjects.   

3.5 Discussion 

A significant reduction in the initial dip amplitude due to caffeine was observed in each 

subject that was studied.  This reduction was observed in both 8 mm slice thickness data (N=5) 
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and the 4mm slice thickness data (N=3), indicating that the effect is fairly robust with respect to 

voxel size.  Consistent with prior studies, the caffeine dose also significantly reduced the 

baseline CBF level in each subject (Cameron et al., 1990; Field et al., 2003; Liu et al., 2004).  

Why does caffeine reduce the initial dip?  Caffeine exerts both neural and vascular effects 

through its binding to adenosine receptors in the brain (Fredholm et al., 1999).  In particular, its 

neurostimulant effects are thought to arise from the inhibition of adenosine A1 receptors, while 

its vasoconstrictive effects are believed to be due primarily to the inhibition of adenosine A2A 

receptors (Ngai et al., 2001 ).  It is reasonable to conjecture that the enhancement of neural 

activity with caffeine would primarily affect the CMRO2 response, while vasoconstriction due 

to caffeine is more likely to alter the CBF response.  The presence of an initial dip is generally 

thought to reflect a temporal mismatch between CMRO2 and CBF, with CMRO2 increasingly 

more rapidly than CBF following the onset of stimulus (Ances, 2004; Buxton, 2001).  A 

reduction in the initial dip could therefore reflect either a relative quickening of the CBF 

response or a relative slowing down of the CMRO2 response.  Given its neurostimulant 

properties, it seems unlikely that caffeine would cause the CMRO2 response to become slower.  

In contrast, a quickening of the CBF response due to vasoconstriction would be consistent with 

the findings of a recent theoretical model introduced by our group (Behzadi et al., 2005).   

In the theoretical model, the dynamics of the CBF response depend on the biomechanical 

responsiveness of the arterioles, which in turn depends on the relative contributions of the 

vascular smooth muscle and connective tissue to the dynamics of the arteriolar wall.  With 

vasodilatory agents, such as carbon dioxide, the vascular smooth muscle relaxes and exerts less 

force so that the arteriole may expand, while the connective tissue becomes stiffer and exerts 

more force, similar to the walls of a rubber tube becoming less compliant as it expands.  This 

makes the arteriole relatively less responsive and slows down the dynamic CBF response.  In 

contrast, with the application of a vasoconstrictive agent, such as caffeine, the vascular smooth 
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muscle exerts more force in order to constrict the arteriole, while the force exerted by the 

connective tissue is reduced.  This redistribution of forces makes the arteriole more responsive 

and speeds up the dynamic CBF response.   

While the above arguments suggest that the reduction in the initial dip is due primarily to a 

quickening of the CBF response, an effect of caffeine on the CMRO2 response cannot be ruled 

out.  It is likely, however, that caffeine-induced changes in the CMRO2 response are smaller 

than changes in the CBF response.  Further experimental studies directly examining the effect 

of caffeine on the CBF and CMRO2 responses would be useful for clarifying the mechanisms 

through which caffeine affects the initial dip.  

Our finding that caffeine reduces the initial dip in humans may also provide insight into the 

conflicting reports concerning the initial dip in animals.  A number of the studies (Duong et al., 

2000; Kim et al., 2000; Logothetis et al., 1999) reporting an initial dip have used isoflurane, 

which has been shown to increase baseline CBF (Sicard et al., 2003).  The isoflurane-induced 

vasodilation would tend to slow down the CBF response and enhance the initial dip.  Recently, 

(Fukuda et al., 2005) showed that the administration of sodium nitroprusside, a vasodilator, 

significantly attenuated the CBF response to neural stimulus and led to a large and sustained 

initial dip in cat visual cortex.  In contrast, studies using alpha-chloralose, which has been 

shown to reduce baseline CBF (Nakao et al., 2001), have typically reported an absence of an 

initial dip, similar to the findings obtained here with caffeine (Mandeville et al., 1999; Marota et 

al., 1999; Silva et al., 2000).  However, as pointed out in (Ances, 2004), there are counter-

examples to these broad trends, such as no initial dip with isoflurane (Lindauer et al., 2001) and 

an initial dip with alpha-chloralose (Ances et al., 2001).  In addition, the initial dip has been 

observed with urethane, which has been shown to slightly reduce CBF in the hippocampus 

(Jones et al., 2001; Osborne, 1997).  Thus, while the vasoactive properties of anesthesia may 

account for some of the variability in the animal studies, it is likely that additional factors, such 
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as brain region, animal species, and details of the experimental preparation and imaging 

method, also play a significant role.  

Finally, given the widespread use of dietary caffeine in the general population, it is likely 

that variability in caffeine usage across subjects plays a significant role in the detection of the 

initial dip in human fMRI studies, especially in young healthy populations where additional 

confounding factors such as medication and disease are typically minimal.  Caffeine usage 

should therefore be carefully controlled in human fMRI studies focused on the initial dip.   
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3.6 Figures  

 
 

 
 
Figure 3.1. Pre-dose (blue) and post-dose (red) group averaged periodic BOLD responses 
acquired with slice thicknesses of 8mm (panel a) and 4mm (panel c).  Averages are from voxels 
within ROIdip (defined separately for each slice thickness).  Magnified views are shown in 
panels (b) and (d).  The initial dip is clearly evident in the pre-dose responses and is absent in 
the corresponding post-dose responses. The length of each error bar represents the standard 
error across subjects and the thick black line denotes the stimulus duration. 
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Figure 3.2.  Comparison of the post-dose (y-axis) and pre-dose (x-axis) initial dip areas for each 
subject for voxels within ROIdip. The solid line represents the line of equality.  Panels a-c and d-
h represent subject data acquired with slice thicknesses of 4 mm and 8 mm, respectively. The p-
values were computed with a paired t-test (two-tailed).  
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Figure 3.3. Magnified views of the pre-dose (blue) and post-dose (red) initial responses for each 
subject averaged across their respective ROIdip.  Panels a-c show the responses from the 4mm 
slice thickness data while panels d-h are for the 8mm slice thickness data.  The error bars 
represent the standard error across voxels. The reduction of the initial dip by caffeine is clearly 
present in each subject’s responses. 
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Figure 3.4.  Comparison of the pre-dose (top row) and post-dose (bottom row) spatial 
localization maps for the initial dip (left column) and the positive BOLD response (right 
column) for subject 1.   Panels a) and c) show the spatial extent of the initial dip in the pre-dose 
and post-dose conditions, respectively, with the colorbar below panel c indicating the scale of 
the correlation coefficients obtained with the initial dip reference function.  Panels b) and d) are 
positive BOLD spatial maps for the pre-dose and post-dose conditions, respectively. The 
colorbar below panel d) indicates the scale of the correlation coefficients obtained with the 
positive BOLD reference function.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

 
 

69 

 
Table 3.1.  Pre-dose and post-dose baseline CBF values shown as mean (standard deviation).  
Mean and standard deviation were computed across voxels in each subject’s respective ROIdip. 
For each subject, significance was computed with a paired t test (two-sided). 
 
 

Subject Estimated daily 

caffeine usage 

(mg) 

Pre-dose 

baseline CBF 

ml/(100 g min) 

Post-dose 

baseline CBF 

ml/(100 g 

min) 

Paired t-test 

P Value 

1 200 53.4 (28.1) 33.5 (16.1) 3.9 e-18 

2 <50 57.6 (23.3) 35.1 (16.8) 2.4 e-20 

3 200 55.4 (22.6) 38.9 (20.2) 1.7e-11 

4 <50 73.1 (14.0) 35.8 (15.9) 1.0e-19 

5 250 88.2 (25.2) 47.4 (21.8) 1.8e-19 
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Chapter 4 
 

CompCor: Component Based Noise Correction for BOLD  
 

and Perfusion fMRI 
 

 

4.1 Abstract 

A component based method (CompCor) for the reduction of noise in both blood 

oxygenation level dependent (BOLD) and perfusion-based functional magnetic resonance 

imaging (fMRI) data is presented. We show the inclusion of principal components derived from 

noise-regions-of-interest (noise ROI) as regressors within the appropriate general linear models 

for the BOLD and perfusion-based fMRI time-series data can significantly reduce physiological 

noise (e.g. cardiac and respiratory induced fluctuations). In our presentation we investigate the 

use of two different methodologies for determining the noise ROI. The first method uses 

anatomical data to identify white matter and CSF-only voxels while the second method uses 

voxels with high temporal standard deviation to define regions dominated by physiological 

noise.  

With application of CompCor, the temporal standard deviation of resting state BOLD and 

ASL is significantly (p<0.01) reduced compared to no correction in a manner consistent with 

application of a previously presented retrospective image based correction scheme,  

RETROICOR. Additionally, we show a marked improvement in sensitivity during visual 

stimulus as quantified in the number of significantly activated voxels based on an F-statistic 

threshold. As compared to RETROICOR, CompCor has the  following advantages: 1) does not 
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require external monitoring of physiological activity (such as cardiac or respiratory signals); 2) 

can be executed in a fully automated fashion (e.g. does not require user intervention).  
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4.2 Introduction  

Over the last decade, blood oxygenation level dependent (BOLD) and perfusion-based 

functional magnetic resonance imaging (fMRI) have become indispensable tools for studies of 

the working brain. When utilized together, the  BOLD and perfusion signal can provide a 

quantitative understanding of the metabolic response to neural activity and provide insight into 

neurovascular coupling mechanisms (Hoge et al., 1999). However, as the fMRI community has 

moved to higher field strengths, physiological noise has become an increasingly important 

confound limiting the sensitivity and the application of fMRI studies (Kruger et al., 2001; Liu et 

al., 2006).  

Physiological fluctuations have been shown to be a significant source of noise in BOLD 

fMRI experiments, with even a greater effect in perfusion-based fMRI utilizing arterial spin 

labeling (ASL) techniques (Kruger et al., 2001; Restom et al., 2006). Physiological sources of 

noise primarily include cardiac pulsations and modulations of the main magnetic field by 

thoracic cavity volume changes associated with respiration. Additional sources include blood 

flow changes coupled to end-tidal C02 and vasomotion occurring at 0.1 Hz (Dagli et al., 1999; 

Glover et al., 2000; Hu et al., 1995).  

Approaches to removing cardiac and respiratory related-noise include temporal filtering, 

image based retrospective  correction (RETROICOR), k-space based correction 

(RETROKCOR) and navigator echo based correction (DORK) (Biswal et al., 1996; Glover et 

al., 2000; Hu et al., 1995; Josephs et al., 2001; Pfeuffer et al., 2002). More recently, 

RETROICOR has been extended to a general linear model (GLM) framework (Lund et al., 

2006) and modified for use in ASL (Restom et al., 2006).  A recent adaptation for BOLD based 

imaging involved the addition of regressors describing variations in respiratory volume (Birn et 

al., 2006).  
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An alternate approach to the use of external measures of physiological activity or specially 

modified pulse sequences is to globally subtract average time-courses from regions unlikely to 

be associated with neural activity (e.g. ventricles, large vessels, etc.). (Lund et al., 2001; 

Petersen et al., 1998). Additionally, component based techniques, utilizing independent 

component analysis (ICA) or principal components analysis (PCA), have shown potential in 

identifying spatial and temporal patterns of structured noise (Beckmann et al., 2004; McKeown 

et al., 2003; Thomas et al., 2002). However, the utility of component based methods has been 

limited to BOLD studies with sampling times short enough to clearly differentiate cardiac and 

respiratory elements from evoked responses (Thomas et al., 2002) in which case a temporal 

band pass filter would be adequate for noise removal.  

Here we present and characterize a novel component based method (CompCor)  for the 

correction of physiological noise in BOLD and perfusion-based fMRI. We show that principal 

components derived from noise regions-of-interest (ROI) are able to accurately describe  

physiological noise processes in gray matter regions. In our presentation we investigate the use 

of two different methodologies for determining noise ROIs. The first method uses anatomical 

data to identify white matter and CSF voxels,  while the second method uses the temporal 

standard deviation (tSTD) of the time-series data to identify voxels dominated by physiological 

noise. We show that the use of principal components derived from a noise ROI as regressors in 

a GLM of the fMRI signal can significantly reduce the temporal variance in resting state scans 

and increase the sensitivity of functional BOLD and perfusion-based studies.  

4.3 Theory  

 4.3.1 CompCor Algorithm 

The underlying assumption in the CompCor algorithm is that signal from a noise ROI can 

be used to accurately model physiological fluctuations in gray matter regions.   The term “noise 
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ROI” refers to areas  (e.g. white matter, ventricles, large vessels) in which temporal fluctuations 

are unlikely to modulated by neural activity and are primarily a reflection of physiological 

noise. The ability to model gray matter physiological noise elements is then predicated on the 

coherence between physiological fluctuations in noise ROI and the gray matter.  A principal 

components analysis (PCA) is used to compactly characterize the time-series data from the 

noise ROI.   Significant principal components are then introduced as covariates in a general 

linear model as an estimate of the physiological noise regressors.  

In this paper we investigate the use of two methods for determining the noise ROI. The first 

method uses anatomical data to identify voxels that consist primarily of either white matter or 

cerebrospinal fluid (CSF). Since neural activation is localized to gray matter, fluctuations in  

white matter and CSF regions should primarily reflect signals of non-neural origin (e.g. cardiac 

and respiratory fluctuations).   

In the second method, voxels with high temporal standard deviation (tSTD) are used to 

define a noise ROI. This approach is based on previous preliminary work by Lund et al. in 

which areas of high temporal standard deviation were found to correspond to ventricles, edge-

regions, and vessels (Lund et al., 2001). The advantage of this method is that it utilizes the time-

series data to identify a noise ROI without the need for an anatomical scan.  

In Figure 1, we present a schematic depicting the basic algorithm in which significant 

principal components from a noise ROI are used as physiological noise regressors in the GLM 

for the gray matter signal.  For functional studies, an added processing step is included in which 

a preliminary GLM analysis, using the appropriate design matrix Xh, is used to exclude voxels 

from the determined noise ROI with a calculated p-value of less than 0.2. This step is performed 

to hedge against the possibility of removing stimulus related fluctuations. 
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4.3.2 General Linear Model for ASL and BOLD 

The general linear model of the BOLD signal in gray matter can be represented as   

nPcSdXhb +++=        [1] 

where b represents the measured BOLD data, Xh  represents the stimulus response where X  is 

a kN ×  design matrix and h  is a 1×k  vector of hemodynamic parameters.  In the case of a 

block design, X  reduces to a vector containing the smoothed stimulus pattern and h  reduces to 

a scalar representing the unknown amplitude.  Nuisance parameters are integrated in Sd , where 

S  is a lN ×  matrix comprised of l nuisance model functions and d  is a 1×l  vector of 

nuisance parameters. We have also added physiological noise terms Pc  where P  is a mN ×  

matrix containing m  regressors and c represents the unknown regressor weights. Finally,  n   

represents the additive noise term. 

A general linear model (GLM) for ASL data in gray matter can be written as  

nPcSdMXhXhp perfBOLD ++++=    [2] 

where p is the acquired raw data representing interleaved tag and control images. In this model, 

the term modeling perfusion perfXh   is modulated by a diagonal matrix, M , consisting of 

alternating -1’s and 1’s for the tag and control images, respectively (Mumford et al., 2006; 

Restom et al., 2006). The term BOLDXh  models a BOLD weighted static tissue component.  

In a noise ROI, where we expect no stimulus-related response, the GLM reduces to 

nPcSdb ++=  or nPcSdp ++= for BOLD and perfusion data, respectively. An 

assumption of CompCor is that the significant principal components from  the noise ROI can be 

used as an estimate estP of the physiological regressors P .   
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4.4 Methods 

4.4.1 Experimental Protocol 

Ten healthy subjects (ages 23 to 39) participated in the study after giving informed consent.  

Each subject viewed a periodic single trial visual stimulus consisting of a 20-second initial “off” 

period followed by 5 cycles of a 4 second “on” period and a 40 second “off” period.  In addition 

to a periodic design, each subject viewed a block design consisting of 4 cycles of a 20 second 

“on” period and a 40 second “off” period. During the “on” periods, a full-field, full contrast 

radial 8 Hz flickering checkerboard was displayed, while the “off” periods consisted of a gray 

background of luminance equal to the average luminance of the “on” period.  All subjects also 

underwent two resting-state scans, during which the subject was presented with the “off” 

condition for 3 minutes.      

4.4.2 Imaging Protocol 

Imaging data were collected on a GE Signa Excite 3 Tesla whole body system with a body 

transmit coil and an eight channel receive coil.  During one of the resting-state and the block 

design scan, data were acquired with a PICORE QUIPPS II (Wong et al., 1998) arterial spin 

labeling (ASL) sequence (TR= 2s , TI1/TI2= 600/1500ms, 10 cm tag thickness, and a 1 cm tag-

slice gap) with a dual echo spiral readout (TE1/TE2=9.1/30 ms, FOV=24 cm, 64x64 matrix, and 

a flip angle= 90 degrees).  Small bipolar crusher gradients were included to remove signal from 

large vessels (b=2 s/mm2). Three oblique axial 8 mm slices were prescribed about the calcarine 

sulcus for this ASL run.  During the periodic single trial runs, BOLD-weighted images were 

acquired with a spiral readout (TE=25ms, TR=500 ms, FOV=24cm, 64x64 matrix, and a flip-

angle of 45 degrees).  In all ten subjects, these BOLD runs used the same slice prescription as 

the ASL runs. For all periodic single trials, 480 volumes at a TR of 500 ms were acquired. The 

second resting state scan was acquired with the following BOLD imaging parameters with a 
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spiral readout (TE=25ms, TR=250 ms, FOV=24cm, 64x64 matrix, and a flip-angle of 40 

degrees). 

A high resolution structural scan was acquired with a magnetization prepared 3D fast 

spoiled gradient acquisition in the steady state (FSPGR) sequence (TI 450ms, TR 7.9ms, TE 

3.1ms, 12 degree flip angle, FOV 25x25x16 cm, matrix 256x256x124).   

Cardiac pulse and respiratory effort data were monitored using a pulse oximeter (InVivo) 

and a respiratory effort transducer (BIOPAC), respectively.  The pulse oximeter was placed on 

the subject's left index finger, and the respiratory effort belt was placed around the subject's 

abdomen.  Physiological data were sampled at 40 samples per second using a multi-channel 

data acquisition board (National Instruments). 

 4.4.3 Data Analysis  

Preprocessing  

All images were coregistered using AFNI software (Cox, 1996) and prewhitened using an 

AR1 model prior to subsequent analysis (Burock et al., 2000; Woolrich et al., 2001). An GLM 

analysis was then performed using  RETROICOR type regressors to construct the physiological 

noise matrix, P, as defined in equations 1 and 2 for ASL and BOLD based imaging, 

respectively. (Glover et al., 2000; Restom et al., 2006). In addition to statistical inference, this 

analysis was used to identify  cardiac and respiratory components, which will be used as a basis 

for comparison to elements removed by application of CompCor. 

Anatomical Definition of Noise ROI 

Anatomical data were segmented into gray matter, white matter, and CSF partial volume 

maps using the FAST algorithm available in the FSL software package (Smith et al., 2004). 

Tissue partial volume maps were linearly interpolated to the resolution of the functional data 

series using AFNI (Cox 1996). In order to form white matter ROIs, the white matter partial 



 

 
 

81 

volume maps were thresholded at a partial volume fraction of 0.99  and then eroded by two 

voxels in each direction to minimize partial voluming with gray matter. The erosion process 

helps identify deep white matter areas. CSF-only voxels were determined by first thresholding 

the CSF partial volume maps at 0.99 and then applying a 3-dimensional nearest-neighbor 

criteria to minimize multiple tissue partial voluming. Since CSF regions are typically small 

compared to white matter regions mask, erosion was not applied.  

CSF and white matter ROIs were combined to form the anatomically defined noise ROI, 

subsequently referred to as  noise ROIanat. Figure 2 depicts the significant areas of white matter 

and cerebrospinal fluid (CSF), as denoted by the magenta voxels, overlayed on their respective 

partial volume maps from subject 1.  

tSTD Based Determination of Noise ROI 

In a preliminary abstract, Lund et al. (2001)  showed that voxel time courses with a 

relatively high temporal standard deviation were dominated by physiological noise.   They 

observed that these voxels occurred in edge-regions, ventricles, and in areas close to large 

vessels. In their approach,  they manually selected five pixels with high temporal standard 

deviation that appeared to represent physiological fluctuation.  The time-series from these 

voxels were then included as nuisance covariates in a GLM, resulting in a marked improvement 

in detection power (Lund et al., 2001). Here we extend the prior work by first using the 

temporal standard deviation to select voxels in an unsupervised fashion and then using principal 

components analysis to reduce the dimensionality of the data.  To determine the number of 

voxels to include in the ROI, we examined the relation between measures of physiological noise  

and measures of temporal standard deviation.  For each voxel, we defined the fractional 

variance of physiological noise as the ratio of the variance of the time series due to the 

physiological noise regressors (as determined with RETROICOR) to the variance of the original 

time series (after removal of constant and linear trends).  The fractional variance of 
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physiological noise was then compared to the temporal standard deviation on a per-voxel basis. 

We  denote the ROI identified with this approach as the noise ROItSTD. We found that including 

the top 20 voxels per slice based on tSTD provided robust removal of physiological fluctuations 

as quantified by  the mean reduction in tSTD in gray matter (partial voluming > 0.9) across 

subjects for resting BOLD runs. This was based on evaluating the performance of CompCor 

with inclusion of 5,10, 20, and 40 voxels per slice. Using 20 voxels significantly outperformed 

selecting only 5 and10 voxels but  resulted in no significant difference compared to inclusion of 

40 voxels. We use a simple selection criteria here to demonstrate proof-of-principle and realize 

that more sophisticated and dynamic selection methodologies might result in greater gains. 

However, this will be the focus of subsequent work.  

Exclusion of stimulus-related components  

To further refine the definition of the noise ROI for runs involving functional stimulus, the 

voxel time courses within the noise ROI are correlated with the stimulus-related reference 

function.  Any voxels with a p-value less than 0.2  was excluded from the noise ROI. Numerical 

simulations (shown in appendix) indicate that a excluding voxels with a p-value less than 0.2 

(R-value <0.1 for block design) with the reference function prevents degradation of 

performance due to incorporation of stimulus related fluctuations in the determined prinicipal 

components. Here we use an even more conservative threshold to hedge against removal of 

stimulus correlated fluctuations. 

Determination of Principal Components 

Voxels time-series from the noise ROI (either anatomical or tSTD) are placed in a matrix 

M  with dimensions Nxm , representing the  dimensions of time and voxels, respectively. The 

constant and linear trends of the columns matrix M  are removed prior to column-wise variance 

normalization. The covariance matrix, MMC ′= , is  constructed and decomposed into its 
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principal components. In our implementation we utilize the singular value decomposition 

(SVD) algorithm to perform the PCA, although other algorithms could also be used.  

The number of significant principal components is determined using a modified version of 

the “broken stick” method described in (Jackson, 1993). This method identifies the point at 

which principal values begin to describe mostly random variation in the data. A Monte-Carlo 

simulation  is first used to generate a statistical representation of expected principal values 

derived from normally distributed data of rank equal to the matrix M . This statistical 

distribution is then compared to the computed principal values from the data. A threshold is 

defined at the point where the difference between the calculated principal values from the data 

are no longer significantly different (p<0.05) from the calculated distribution.  Based on this 

method,  we found an average of 6.3± 0.52 and 4.5± 0.38 significant principal components for 

BOLD and ASL runs, respectively, when using the anatomical noise ROI.  For the noise 

ROItSTD ,there were an average of  5.9± 0.74 and 4.2± 0.59 principal components for the  

BOLD and ASL runs, respectively. 

Quantitative Assessment of Performance 

For each subject, average power spectra were obtained by computing the power spectra for 

each voxel time-series of interest, averaging the spectra across voxels within the gray matter 

voxels (partial volume threshold of 0.9), and then normalizing by the peak power over all 

frequencies. The average power spectra of physiological noise components estimated by 

RETROICOR was used to identify the peak frequencies related to the cardiac  and respiratory 

noise elements.  Frequencies for which the average cardiac or respiratory components had a 

normalized power greater than 0.1 were then used to define cardiac and respiratory frequency 

bands, respectively. 
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 Spectral coherence analysis was used to compare components removed by RETROICOR 

with those removed by CompCor. The average spectral coherence  over a frequency band, fband, 

is defined  (Stoica et al., 1997)    

( )
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=  

where the xxP  and yyP are the power spectra  of time-series x and y, respectively,  and xyP  is 

the cross power spectral density. For each voxel the spectral coherence across the cardiac and 

respiratory bands was computed.  The  average spectral coherence across voxels in gray matter 

(partial volume > 0.9)  was then computed. 

In order to quantify the degree of noise reduction in the resting state scans, the temporal 

standard deviation was computed for all voxels within gray matter (partial volume >0.9). A 

paired t-test was then used to assess whether CompCor significantly altered the mean temporal 

standard deviation across voxels per subject.  

F-statistics were computed using the appropriate GLM for the BOLD and ASL time-series 

under the following conditions: 1) no inclusion of physiological noise regressors (e.g. no 

correction), 2) inclusion of RETROICOR regressors, 3) inclusion of CompCor regressors 

derived from the noise ROIanat, and 4) inclusion of CompCor regressors derived from the noise 

ROItSTD.  The reference functions, hBOLD and hperf, were formed by convolving the appropriate  

stimulus pattern with a gamma density function of the form h(t) = (τn!)− 1((t − ∆t)/τ) 

exp(− (t − ∆t)/τ) for t ≥ ∆t and 0 otherwise, with τ = 1.2, n = 3 and ∆t = 1 (Boynton et al., 1996). 

A constant term and linear trend term were included as nuisance regressors in the analysis. A 

functional region-of-interest was determined for each subject by thresholding the F-values 

(corresponding to data with no correction)  at 5 and 100, corresponding to p-values of 0.03 and 

0.001, for the ASL and BOLD functional runs, respectively. These values were chosen to yield 



 

 
 

85 

approximately the same number of activated voxels for the ASL and BOLD functional runs and 

are consistent with thresholds previously used to investigate physiological noise reduction for 

ASL (Restom et al., 2006). A paired t-test was used to assess whether CompCor significantly 

increased the number of activated voxels for periodic BOLD and block ASL runs as compared 

to no correction on a per subject basis.  

4.5 Results  

Figure 5 characterizes the elements removed from gray matter regions (partial voluming 

>0.9) from the resting BOLD run from subject 1. The normalized average power spectra are 

presented. With application of RETORICOR (panel a)  cardiac (~1.2 Hz) and respiratory 

(~0.2Hz) cpmponents are removed. Application of CompCor using either the noise noise ROIanat 

or noise nROItSTD , results in removal of  elements consistent with cardiac and respiratory 

elements. An additional 1/f component is removed with application of noise ROIanat as depicted 

in panel b).  

As an example of the noise elements removed with each of the correction schemes, 

presented as average power spectra, from Subject 1 are  presented in Figure 6.  Cardiac and 

respiratory elements are aliased due to the long TR and are represented in red and green lines, 

respectively. The spectra of elements removed by application of CompCor using the noise ROI 

(anat) (panel b) is consistent with cardiac and respiratory elements whereas using the noise ROI 

(tSTD) removes primarily a cardiac component (see panel c).  

As described in the Methods section, the average spectral coherence for each subject  was 

computed between noise components identified by CompCor and the cardiac and respiratory 

components identified by RETROICOR.  For CompCor  with noise ROIanat applied to the  

resting BOLD runs, the average voxel-wise spectral coherence and standard error values across 

subjects (N = 10)  were 0.67 ± 0.08 and 0.80 ± 0.05   for respiratory and cardiac elements, 
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respectively. With application of CompCor using noise ROItSTD , average values for the spectral 

coherence with respiratory and cardiac elements were 0.62 ± 0.10 and 0.86± 0.07, respectively.   

For resting ASL runs  the mean spectral coherences when using CompCor with  noise ROIanat 

were 0.79±  0.03 and 0.65±  0.06 for respiratory and cardiac elements, respectively. With the 

application of CompCor using noise ROItSTD , average values for the spectral coherence with 

respiratory and cardiac elements were 0.82 ± 0.03 and 0.69± 0.06, respectively. See tables 2 

and 3 for a summary of these results. 

 The impact of CompCor and RETROICOR on the average temporal standard deviation of 

the resting BOLD and ASL runs are presented in Figure 7, with associated standard error bars 

across subjects (N = 10).  Panels a) and b) show the mean temporal standard deviation (tSTD) in 

gray matter (partial voluming >0.9) in  resting BOLD and ASL, respectively, with application 

of RETROICOR and the two variants of CompCor. As compared to no correction, 

RETROICOR, significantly (p<0.001)  reduced the tSTD in the resting BOLD run from 84.2 to 

78.2 whereas application of CompCor using  noise ROIanat and CompCor using noise ROItSTD 

resulted in even greater reductions to mean values of 63.2 (p<0.001) and 58.4 (p<0.001), 

respectively. In resting ASL data the tSTD was reduced from 56.0 to 45.6 (p <0.001), 44.7 

(p<0.001), and 42.8 (p<0.001), with the application of RETROICOR, CompCor using noise 

ROIanat, and CompCor using noise ROItSTD , respectively.  

Bar graphs comparing the effect of the various correction schemes on the number of 

activated voxels for the functional ASL block and BOLD periodic runs are shown in  Figure 8. 

The number of activated voxels  for a periodic BOLD run (panel a) was significantly increased  

(p<0.001) from 127 to 147.4, 161.2, and 179.9 with the application of RETROICOR, CompCor 

using noise ROIanat , and CompCor using noise ROItSTD, respectively. In ASL block functional 

runs, the number of voxels passing the F-thresholds increased from 105.9 to 119.6 (p=0.07), 

151.1 (p=0.004), and 160.3 (p=0.003) with application of RETROICOR, CompCor using noise 
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ROIanat , and CompCor using noise ROItSTD, respectively. For both functional BOLD and ASL 

runs, CompCor using noise ROIanat resulted in greater increases than CompCor using noise 

ROItSTD .  

4.6 Discussion  

In this paper, we have examined whether signal components derived from noise regions of 

interest, unlikely to be modulated by neural activity. can be used to reduce the contributions of 

physiological noise components within activated regions in the analysis of ASL and BOLD 

data.  We considered two methods for the determination of the noise ROIs: 1) Anatomical 

identification of significant areas of CSF and white matter  and  2) Definition of noise regions 

based upon their  temporal standard deviation. We demonstrated that the application of 

CompCor using either ROI significantly reduces the  temporal standard deviation of both 

resting state BOLD and ASL data.  Additionally, we have shown that CompCor with either ROI 

leads to a marked improvement in sensitivity during visual stimulus as quantified by the number 

of significantly activated voxels for both an ASL block design experiment  and a periodic 

BOLD design experiment. 

In each implementation of CompCor, using either noise ROIanat or noise ROItSTD,  there are 

possible complications arising from introduction of bias and from the accurate determination of 

noise ROI’s. Bias may result in removing components that are related to activation instead of 

physiological noise. For instance, although CompCor using the noise ROItSTD  resulted in 

significant decreases in temporal STD and increases in sensitivity, it relies on the ability to 

accurately exclude voxels that may include activation.  Accurate exclusion may prove to be 

difficult when dealing with complex event-related paradigms for which the expected response 

may not be well defined or for resting state scans aimed at studying functional connectivity.   
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 Although requiring an additional scan to obtain anatomical data, CompCor using 

anatomically defined noise ROI provides an unbiased way of removing physiological 

fluctuations, since neural activation should be absent from regions of white matter and CSF. 

However, accurate tissue information must be obtained and this can be a concern with various 

slice prescriptions or when anatomical to functional alignment is problematic (e.g. due to 

subject motion) and result in possible bias. With care, application of CompCor with an 

anatomically determined noise ROI, should allow for the robust identification and  removal of  

physiological fluctuations. 

In our implementation of CompCor we use  a simplified analysis to determine the number 

of significant principal components to retain. Although more sophisticated methods exist to 

estimate the latent dimensionality of the noise, we find that the results are fairly insensitive to 

the exact number of components used in the GLM.  

 

4.7 Conclusion  

We have shown that application of CompCor to ASL and BOLD fMRI time-series can 

significantly reduce physiological noise. CompCor does not require external monitoring and can 

applied in an automated fashion to reduce the confounding effect of physiological fluctuations 

on fMRI time-series.  
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4.8 Appendix . Reduction of Physiological Noise in Simulated fMRI Data 

The CompCor algorithm relies on the ability to accurately remove physiological noise 

without removing stimulus related fluctuations. In an ideal situation, the noise ROI would only 

contain voxels from the noise-only distribution, H0 , and determined principal components 

would describe only the noise subspace. However in practice, a percentage of noise ROI voxels 

may contain stimulus correlated time-series, taken from a signal+noise distribution H1, and an 

exclusion criteria must be used to hedge against removing stimulus correlated components. 

Here we examine the effect of the choice of  correlation coefficient exclusion criteria on the 

resulting performance of CompCor.  

The general linear model of the BOLD signal with activation is represented as   

nPcSdXhbsimulated +++=     [A.1] 

where bsimulated represents the overall simulated BOLD response, Xh  represents the stimulus 

response where X  is a kN ×  design matrix and h  is a 1×k  vector of hemodynamic 

parameters.  Nuisance parameters, constant and linear terms, are integrated in Sd  and 

physiological noise terms in Pc  where P  is a mN ×  matrix containing m  regressors and c  

are unknown regressor weights. Finally, n  represents the additive noise term. H1 voxels include 

a stimulus response while H0  do not include an  Xh term. 

As is the case in fMRI data analysis, knowledge of the physiological noise parameters is not 

available and GLM analysis is performed using an estimate of the physiological noise 

regressors: 

ncPdShXb estsimulated +++= ˆˆˆ    [A.2] 

where the ĥ , d̂ , ĉ and n̂  represent estimates of the true stimulus amplitude, nuisance term, 

physiological noise, and residual noise. In this formulation, the physiological noise is not 
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explicitly known so an estimate, estP , is used. In the CompCor algorithm estP  is determined by 

performing a principal component analysis of noise-only voxels, H0. A threshold based on a 

calculated correlation coefficient with the stimulus reference function is used to exclude voxels 

that may contain stimulus-related fluctuations. Here we explicitly characterize the ability of the 

CompCor algorithm to remove physiological noise as a function of the correlation coefficient 

threshold.  

A Monte Carlo simulation was used to characterize the CompCor process on removing 

known physiological data. Individual voxel responses (N=5000)  were generated by randomly 

selecting the relative weights of components within the GLM framework. Noise only voxels, 

H0, and noise with activation, H1, were generated.  Physiological regressors were generated at 

frequencies consistent with cardiac (0.9 Hz) and respiration (0.3 Hz) with randomly  generated 

phases to represent possible phase lags between voxels. Physiological noise weights were 

chosen from a distribution governed by N(0,0.3). A constant term was included  as a nuisance 

term with d chosen from an uniform distribution, U(0,1).  The additive noise term, n, were 

generated from a normal distribution, N(0,1). For H1 voxels, the stimulus response, Xh, was 

generated using a block design, 20 second initial off period followed by 4 cycles of 20 seconds 

on and 40 seconds off.  The stimulus weight was chosen as 0.3 to simulate a worst-case scenario 

with a low-level stimulus response.  

The estimation of the physiological noise regressors is determined using a principal 

component analysis of voxel time-series below an absolute value of correlation coefficients 

(CC). CC’s were determined using the reference function and a simplified version of the GLM 

without the inclusion of physiological noise terms, Pc.  

Panel a) in figure A.1 is a representation of the resulting histogram of correlation 

coefficients using a equal number of H1 and H0 voxels. The solid-line distributions represent the 

H0 and H1  without inclusion of physiological noise and the dotted-line distributions reflect the 
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effect of physiological noise on the respective distributions. The H1 distribution is centered on a 

correlation coefficient of 0.3 before inclusion of physiological noise and 0.2 after. As expected, 

the added noise degrades the calculated CC’s.  

If a principal component analysis is performed on the H0  voxel time-series, the 

physiological noise subspace can be compactly characterized with the use of only five principal 

components. Principal components are used as columns of the estimated physiological noise 

matrix estP  allowing for the removal of physiological noise. However, in practice we do not 

have perfect knowledge of H0 and H1 voxels and a CC threshold must be used to select voxels to 

be included in the PCA.  As the absolute value of the CC threshold is increased we would 

expect more H1 voxels being incorporated in the PCA analysis and the possibility to remove 

stimulus-related fluctuations is increased. Panel b) of figure A1, depicts the maximum 

correlation of the identified principal components and the reference function. As the CC 

threshold increases beyond ~0.2 , the derived PC’s begin to become increasingly more 

correlated. Inclusion of the PC’s in the GLM will decrease the estimated stimulus response 

weight and degrade performance.  

As the CC threshold is increased for inclusion of voxels in the subsequent principal 

component analysis, the degree of correction is reduced, as depicted by the ROC curves 

provided in panel c) in figure A.1. This is a result of the confounding effects of stimulus related 

fluctuations. The dotted line is a representation of the probability of detection (pD) versus the 

probability of false alarm (pFa) of the uncorrected data. Using a low CC threshold, in which H1 

voxels are excluded from PCA analysis, results in increased pD with a decrease in pFa, as 

depicted in the upward shift of the ROC curve. However, at a threshold of 0.16, the resulting 

performance of using the correction is worse than the uncorrected data. 

Panel d) depicts the area under the ROC curve as a function of CC threshold. This is a non-

parametric normalized measure of performance and it is evident that the overall performance is 
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degraded when using a CC threshold beyond 0.2. However, performance is robust below this 

threshold and based on this simulation we choose to use a conservative exclusion criteria of 0.1 

in our presentation of CompCor. 
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4.9 Figures and Tables  

 

 
 
 
 
Figure 4.1.  Schematic of the CompCor algorithm in which significant principal components 
derived from  time-series data within noise regions-of-interest are used to form an estimate, Pest, 
of the  physiological noise matrix, P. Incorporation of  Pest into the general linear model for gray 
matter allows for estimation and removal of physiological fluctuations.   
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Figure 4.2. Areas with a high fraction of white matter and cerebrospinal fluid (CSF), as denoted 
by the magenta voxels, overlaid on their respective partial volume maps from a representative 
slice from Subject 1. White matter-only areas (panel a) were determined by first thresholding 
the white matter partial volume fraction map  at 0.99 and then performing a map erosion by two 
pixels to minimize the effect of partial voluming with other tissue types.  Panel b) displays CSF-
only areas with a partial volume fraction  greater than 0.99 with application of a nearest 
neighbor clustering criteria. 
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Figure 4.3.  Panel a) is a  spatial map of the fraction of the variance of physiological noise to the 
overall signal variance for the resting BOLD scan from a representative slice in subject 1. Panel 
c) compares the log(tSTD) to the  fractional variance of physiological noise per voxel. Data 
points in red represent the twenty voxels with the highest tSTD and correspond to a high 
fraction of physiological noise. Areas of high fractional variance of physiological noise 
correspond to areas of high temporal standard deviation (tSTD) of the raw time-series as 
depicted in panel b).  
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Figure 4.4.  Panel a) is a  spatial map of the fraction of the variance of physiological noise to the 
overall signal variance for the resting ASL scan from a representative slice in subject 1. Panel c) 
compares the log(tSTD) to the  fractional variance of physiological noise per voxel. Data points 
in red represent the twenty voxels with the highest tSTD and correspond to a high fraction of 
physiological noise. Areas of high fractional variance of physiological noise correspond to areas 
of high temporal standard deviation (tSTD) of the raw time-series as depicted in panel b).   
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Figure 4.5.  Average normalized power spectra of components removed from gray matter 
(partial volume >0.9) with the application of various correction schemes to the resting BOLD 
run from subject 1.   As shown in panel a, cardiac and respiratory elements removed by 
RETROICOR are located at 0.2 and 1.2 Hz, respectively. Application of CompCor using either 
noise ROIanat (panel b) or noise ROItSTD (panel c)  removes components similar to the  cardiac 
and respiratory elements identified by RETROICOR.   The use of noise ROIanat also removes a 
1/f noise component as evident in panel b).  
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Figure 4.6.  Average normalized power spectra of components removed from gray matter 
(partial volume >0.9) with application of  various correction schemes to the resting ASL run 
from subject 1.  As shown in panel a, cardiac (red) and respiratory (green) elements identified 
by RETROICOR are aliased due to the long TR. The power spectra of components removed by 
application of CompCor using  the noise ROIanat (panel b) is similar to the sum of the  cardiac 
and respiratory elements identified by RETROICOR. In contrast, CompCor with the noise ROI 
(tSTD) removes primarily a cardiac component (see panel c).  
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Figure 4.7.  Average reduction across subjects (N=10) in the mean temporal standard deviation 
across voxels with application of RETROICOR and CompCor in both resting BOLD (panel a) 
and ASL (panel b) runs. Standard error bars represent the standard error across subjects. 
Diamonds represent a significant difference (p<0.01) between the mean temporal standard 
deviation across voxels per subject when no correction is applied  and the standard deviation 
after  removal of physiological noise with use of either RETROICOR or the two variants of 
CompCor. A paired t-test was used to assess significance. 
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Figure 4.8.  Average number of significantly activated voxels across subjects (N=10) with 
application of RETROICOR and CompCor for both periodic BOLD (panel a) and block ASL 
(panel b) runs. Standard error bars represent the standard error across subjects. Diamonds 
represent a significant difference (p<0.01) between the number of  activated voxels per subject 
when no correction is applied and the number after removal of physiological noise with use of 
either RETROICOR or the two variants of CompCor. A paired t-test was used to assess 
significance. 
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Figure 4.9. Effect of physiological noise and application of CompCor on simulated fMRI 
responses. Panel a) is a histogram of resulting correlation coefficients between the generated 
time-series and the reference function. The histograms in blue represent the H0 and H1 
distributions without the inclusion of physiological noise. The histograms in red depict the 
degrading effect of physiological noise on the H1 distribution. Panel b) characterizes the effect 
of the CC threshold on the derived principal components. As the CC increases stimulus-
correlated elements in the principal components become evident. This then results in 
degradation of performance as shown by the downward shift of the cyan ROC curve with 
respect to the dotted line representing performance without correction in panel c). Panel d) 
provides a non-parametric visualization of performance and degradation occurs beyond a CC of 
0.15.  
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Tables 4.1. Average number of principal components used in CompCor for resting BOLD and 
ASL runs (N=10). Average shown with standard error in parentheses. 
 

 BOLD  ASL 

CompCor (noise ROI anat) 6.3 (0.52) 4.5 (0.38) 

CompCor (noise ROI tSTD) 5.9 (0.74) 4.2 (0.59) 

 
 
 
 
Tables 4.2. Spectral coherence of components removed by CompCor and identified as cardiac 
and respiratory noise by RETROICOR. Resting BOLD runs (N=10). Average coherence shown 
with standard error in parentheses. 
 

 Respiratory Noise Cardiac Noise 

CompCor (noise ROI anat) 0.67 (0.08) 0.80 (0.05) 

CompCor (noise ROI tSTD) 0.62 (0.10) 0.86 (0.07) 

 
 
 
 
Tables 4.3. Spectral coherence of components removed by CompCor and identified as cardiac 
and respiratory noise by RETROICOR. Resting ASL runs (N=10). Average coherence shown 
with standard error in parentheses. 
 

 Respiratory Noise Cardiac Noise 

CompCor (noise ROI anat) 0.79 (0.03) 0.65 (0.05) 

CompCor (noise ROI tSTD) 0.81 (0.03) 0.70 (0.06) 
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Chapter 5 
 

Conclusions 
 
 

fMRI has grown tremendously over the past decade as a valuable tool to non-invasively 

study the working human brain. Although a powerful tool, the fMRI signal is an indirect 

measure of neural activity and is the result of the complex coupling of evoked neural responses 

and regional hemodynamics. Non-neuronal sources of variability have limited the application 

and quantitative interpretation of the fMRI signal. In particular, the baseline vascular state and 

physiological noise have remained important factors confounding the fMRI signal. 

 

5.1 An Arteriolar Compliance Model of the CBF Response to Neural Stimulus 

 5.1.1 Contributions 

In chapter 2, a novel arteriolar compliance model was presented and shown to describe to 

first order the observed complex dependence of BOLD dynamics on the baseline vascular state. 

Published in (Behzadi et al., 2005), the arteriolar compliance model represents the first 

concerted effort to model this important effect.  

 5.1.2 Future Directions 

Although the arteriolar compliance model has been shown to predict to first order the 

observed changes in the temporal dynamics of the CBF and BOLD responses, it is unable to 

simultaneously fit the post-stimulus undershoot of the BOLD response under all baseline 

conditions(Behzadi et al., 2005). The post-stimulus undershoot is thought to originate from a 

mismatch between CBF and CBV that is a result of the viscoelastic properties of the venous 
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compartment(Buxton et al., 1998). As CBF returns to its baseline value with cessation of 

evoked neural activity the CBV remains elevated, returning to baseline with a viscoelastic time 

constant for deflation, τv- . Then if the oxygen extraction fraction returns to baseline with CBF, 

and the CBV remains elevated, the total dHb will be higher than baseline, reducing the BOLD 

signal. However other explanations of the post-stimulus undershoot are possible. CMRO2 may 

remain elevated with a return to baseline of CBF and CBV or CBF may drop below baseline 

after the stimulus ends, possibly due to neuronal inhibition during the post-stimulus 

period(Buxton et al., 1998). 

In Behzadi et al., we showed that the τv- appears to decrease with resting CBF(Behzadi et 

al., 2005). A smaller τv- at low baseline CBF suggests a relatively greater elastic response. This 

may reflect the non-linear nature of the veins in which they are fairly compliant and stiffen 

exponentially as the CBF and radius increase(Fung, 1984). Although this result supports the 

notion that the post-stimulus undershoot is a reflection of a mismatch between CBF and CBV, 

more investigation is required to fully elucidate the role of CMRO2 and neural activity during 

this period. Extensions to the arteriolar compliance model are needed to explain the dynamics of 

the post-stimulus undershoot.  

In order to describe discrepancies between spin echo and gradient echo based BOLD 

measurements, Uludag et al. recently presented the compartmental balloon model(Uludag et al., 

2005). In his formulation the BOLD signal model was adapted to describe the various 

contribution of the arteriole, capillary, and venules vascular compartments to the overall BOLD 

signal. This extension of the balloon model represents an important step in describing 

differences in the observed BOLD dynamics as a result of different pulse sequence sensitivities. 

Future work will involve integration of the arteriolar compliance model and the compartmental 

balloon model.  
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5.2 Caffeine Reduces the Initial Dip in the Visual BOLD Response at 3T 

5.2.1 Contributions 

In chapter 3, we show that caffeine, through modulation of the baseline vascular state, 

significantly affects the detection of the initial dip in the visual BOLD response. As presented in  

(Behzadi et al., 2006), this study provides insight into the physiological basis of the initial dip 

and on the on-going debate in fMRI regarding the presence of the initial dip that has spanned 

several years.  

5.2.2 Future Directions 

Additional extensions to the BOLD model are needed to help explain the experimental 

observation that the initial dip is reduced with vasoconstriction. If strict coupling of CBF and 

CMRO2 is preserved, as presented in the formulation of the arteriolar compliance model in 

chapter 2, we would expect no initial decrease in dHb. For an initial dip of the BOLD signal to 

occur, there must be a transient increase in dHb resulting from a mismatch of CBF and CMRO2 

(Behzadi et al., 2006). This may occur if there is a time delay between an immediate change in 

CMRO2 and the consequent CBF changes. It is currently unclear what the dependence of the 

CMRO2 dynamics are on the baseline vascular state. A more formal metabolic model for 

CMRO2 dynamics as a function of baseline is needed and will be the focus of future work.  

 

5.3 Component Based Noise Correction 

5.3.1 Contributions 

In chapter 4, a component based method for the removal of physiological noise was 

developed and shown to significantly reduce the temporal variance and increase the sensitivity 

of BOLD and perfusion-based fMRI. The proposed algorithm was shown to remove cardiac and 

respiratory induced noise without the need for external monitoring of physiological processes . 
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5.3.2 Future Directions 

We presented a component based noise correction scheme in chapter 4 that utilized 

principal components from noise regions-of-interest to model and remove the effect of 

physiological noise from gray matter. Future extensions to this technique will investigate the 

use of independent component analysis (ICA) to identify individual physiological noise 

elements. Whereas PCA involves the estimation of uncorrelated (orthogonal) components,  ICA 

takes a more general approach and aims at decomposing the data into statistically independent 

and non-Gaussian components (McKeown et al., 1998). ICA has been used extensively in fMRI 

to identify underlying patterns of activation (Beckmann et al., 2004; McKeown et al., 2003; 

McKeown et al., 1998). However, its ability to robustly identify the physiological noise 

subspace has yet to be studied.  

Recently additional sources of physiological noise have been identified involving variations 

in respiratory volume and cardiac rate variation (Birn et al., 2006) (Katura et al., 2006). 

Additional  extensions to the CompCor algorithm presented in chapter 4 will be to characterize 

its ability to remove noise components related to variation of the respiratory and cardiac rates 

occurring at 0.03 Hz and 0.1 Hz, respectively. 
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Appendix A1 
 

Magnetic Resonance Imaging Physics Primer 
 

 

A1.1 Introduction 

In 1936, Pauling and Coryell demonstrated that deoxyhemoglobin (dHb) disrupts a 

magnetic field, whereas oxygenated Hb does not (Pauling et al., 1936). This origin of this effect 

is that Hb is diamagnetic when oxygenated and paramagnetic when deoxygenated. As a 

paramagnetic agent, dHb alters the local magnetic susceptibility, creating magnetic field 

distortions within and around blood vessels, and this inhomogenous field produces alterations in 

the local magnetic resonance (MR) signal. This phenomenon was not leveraged until Ogawa et 

al, in 1990, showed that the MR image of a mouse brain was modulated by the level of inspired 

02 (Ogawa et al., 1990). They noted that the presence of dHb, a function of inspired 02, reduced 

the local MR signal. They identified the effect as the  blood oxygenation level dependent 

(BOLD) signal  and it was soon after that Kwong et al. first demonstrated a mapping of 

activation in the human brain using gradient echo MR imaging during visual stimulation 

(Kwong et al., 1992).  

In order to gain a qualitative understanding of the BOLD signal, we can use the 

experimental observation detailed in the Introduction that with neural activity CBF increases 

more than CMRO2, leading to decreases in  dHb and an increase in the local BOLD signal. This 

basic observation has served as the foundation of fMRI and helped revolutionize neuroimaging. 

In order to more quantitatively  understand the BOLD signal it is first important to review basic 
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MR physics in the context of the BOLD signal. Interpretation of BOLD measurements is greatly 

increased with the application of arterial spin labeling (ASL) techniques used to image the 

perfusion response to neural activity. Taken together, the ASL and BOLD signals provide an 

added insight into the dynamics of the hemodynamics response to neural activity. 

A1.2 The NMR signal 

A basic review of MR physics is provided to help in the understanding of the BOLD 

response used in fMRI. When an object is placed in a uniform magnetic field, denoted by B0, 

the nuclear magnetic dipole tend to align with the field. If the direction of magnetization is 

altered from its equilibrium point, with application of an external force, the magnetization will 

realign with a given time constant T1.  

Another important physical phenomena central to MRI is that certain nuclei (notably 

hydrogen) possess an intrinsic magnetic moment and rotate at a frequency proportional to the 

magnetic field. This phenomena, known as the nuclear magnetic resonance (NMR), was 

discovered in 1946 by two groups: Purcell, Torry, and Pound and Bloch, Hansen, and Packard. 

The fundamental equation of magnetic resonance is: 

00 Bv γ=        [1] 

In which the resonant frequency (i.e. Larmor frequency) v0, is a function of the molecule 

specific gyromagnetic ratio,γ , and the magnetic field, B0. In a basic NMR experiment, a sample 

is placed in a uniform magnetic field and an oscillating RF pulse , generated by an oscillating 

current in a nearby coil, is applied. At its resonant frequency, a nucleus can absorb 

electromagnetic energy from the RF pulse which can effect the  direction of its magnetization. 

Therefore if the RF pulse is applied at the resonant frequency of the sample and in a field 

orthogonal to B0, the magnetization of the sample will “tip” toward a direction orthogonal to B0, 

or equivalently into the transverse plane. In time, the magnetization recovers back to align with  
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Figure A1.1. Longitudinal magnetization with recovery rate of T1. After application of a 
RF pulse, the longitudinal magnetization is “tipped” onto the transverse plane. The 

magnetization then recovers to align with B0. 
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the direction of B0 with a time constant T1. During the recovery period, the molecules are 

rotating about the axis of the direction of magnetization. This rotating magnetic field creates a  

transient oscillating current, known as the free induction decay (FID), in the coil. The recovery 

of the longitudinal magnetization following the 90 degree RF pulse, as governed by exponential 

T1   recovery, is depicted figure A1.1. The magnitude of the magnetization in the direction of B0 

is referred to longitudinal magnetization whereas the magnetization orthogonal to B0 is known 

as transverse magnetization or precessing magnetization. The net precessing magnetization 

decays away with a time constant, T2. The reason for this is that the individual dipoles that 

contribute to the overall transverse magnetization are not all precessing at the same rate. For 

instance, a hydrogen molecule in a water sample will experience randomly varying magnetic 

fields due to thermal motion of other hydrogen atoms. In some cases the interaction will speed 

up the precession and in other cases slow down the precession causing phase shifts between 

individual dipoles. Since the net magnetization is dependent on the coherence of the precession 

of individual dipoles the signal will be degraded. The process of phase dispersion and T2 decay 

is presented in figure A1.2.   

To summarize, the NMR signal is a result of applying a RF pulse to tip the sample 

magnetization to an angle, known as the flip angle, to the main magnetic field B0. As the 

individual molecules precess and realign with the main field, an oscillating current is generated 

in a nearby coil. The resultant signal is a function in time of the longitudinal relation time 

constant T1 and the transverse decay constant T2, which are both a function of B0. In a more 

complex sample, the resultant signal is a function of time determined by multiple T1’s and T2’s.  

In practice, the transverse magnetization decays faster than the expected T2. This increased 

decay is due to magnetic field inhomogeneity and is referred to T2*. In order to describe  the  

NMR signal, Block proposed a set of three coupled differential equations. The equations are 

written separately for each direction of the magnetization, Mx, My, and Mz. 
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Figure A1.2. The decay of transverse magnetization with the decay rate of T2. 
After the 900 RF pulse is turned off and the magnetization is in the transverse 
plane, all spins are in phase. Dephasing occurs in time due to spin-spin 

interactions and magnetic field inhomogeneity.  
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In this formulation, Mz is the direction of the main magnetic field B0, and Mx and My are the 

directions orthogonal to B0.  

A1.3 Magnetic Resonance Imaging 

In MRI the hydrogen molecule is used as a basis for generating the NMR signal. Contrast is 

generated by taking advantage of the fact that the T1 and T2 of various tissues are different. For 

instance, at a B0 of 1.5T, the T1’s for gray matter, white matter, and CSF are 900ms, 700ms, and 

4000ms, respectively(Buxton, 2002). The T2’s are considerably shorter at 70 ms, 90 ms, and 

400 ms, for gray matter, white matter, and CSF, respectively(Buxton, 2002).  Due to the 

difference in the T1 and T2’s, contrast between tissue types can be generated by adjusting the 

time in which one records the resultant NMR signal. However, the acquired signal has no 

information about the location of the source of the signal. Some form of spatial encoding must 

be done to localize the acquired signal.  

Lauterbaur (1973) and Mansfield (1977)  applied a magnetic gradient across a sample in 

order to spatially localize the NMR signal (Lauterbur, 1973; Mansfield, 1977). Since the 

resonant frequency is dependent on the magnetic field, the molecules in a sample under a 

gradient would precess at different rates depending on their location. In other words, a gradient 

field produces a linear variation of the precession rate with position. This effect can be 

understood by dividing a sample in the direction of the gradient into three distinct regions 

denoted by their position relative to the center as x-1, x0, x1. Since the gradient is linear with 

respect to location, the local field in each subsection of the sample can be thought as B0-∆B, as 
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B0 ,and, as B0+∆B. At time equal to zero, the net phase of the magnetization in each section is 

equivalent. However in time, the phase of x-1 will lag with respect to x0 while x1 will  be ahead 

due to their different respective magnetic fields. The application of a gradient is modulating the 

phase of the localized signal. This modulation is equivalent to multiplying the local signal with 

a cosine with a given frequency, which is a function of the length of time the local phase has 

been affected by the gradient. The basis of imaging using the NMR signal is the fact that the 

phase of the local signal can be manipulated by the application of a magnetic gradient such that 

the net signal is the spatial Fourier transform of the distribution of transverse magnetization. If 

encoding is performed in multiple directions the resultant NMR signal can be localized in space.  

This is more formerly characterized by considering a signal, S(t), within a sample volume 

V: 

∫ −=
V

tri
rderptS

3),()()( φ
     [3] 

where p(r) is the position dependent density of nuclear spins and ),( trφ represents their phase. 

The phase of the signal increases at a rate proportional to its angular velocity, which is turn is a 

function of the local magnetic field. With application of a magnetic field gradient, described 

by rtGBtrB ⋅+= )(),( 0  , the relative phase between spins can be expressed by: 
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Combining equations 3 and 4, yields 

∫ ⋅−=
V

rtik
rderpkS

3)()()(      [5] 

which is the Fourier transform equation, stating that S(k) is equivalent the Fourier transform of 

the spin density p(r). The net area under the curve of the gradient then determines the relative 

position in k-space. A basic MRI image is formed by applying a RF-pulse to tip the  
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Figure A1.3. (a) Schematic echo planar Gx and Gy gradients.  

(b)Corresponding trajectory through k-space. 
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magnetization to a given flip angle, α, one then waits a given echo time (TE) depending on 

desired contrast, and finally applies gradients and then samples the resultant k-space 

representation of the image. The raw data is then the spatially encoded spin density, at an 

imaging time with contrast determined by the T1’s, T2’s. Reconstruction of the image is 

accomplished by taking the inverse Fourier transform of the image with knowledge of the k-

space trajectory. The process of applying an RF and imaging is repeated at a given time of 

repetition, TR.   

A basic echo planar imaging (EPI) scheme is presented in figure A1.3.  EPI is a time 

efficient way to traverse k-space. After slice selective excitation, a negative Gx and Gy gradient 

is applied to acquire the first sample in k-space. Recall that the net area under the curve of the 

gradients represents the relative encoding of the image and position in k-space. Next a positive 

Gx gradient is used to march across kx in which discrete samples are taken from the resultant 

NMR signal. A positive Gy gradient is used to move positively in ky and the  Gx gradient is 

reversed to traverse back across kx. This  sequence is repeated until the required k-space 

samples are captured. The primary focus of MRI has been in the manipulation of this basic 

sequence of events to optimize different contrast of interest in the context of the trade-off 

between spatial and temporal resolution.  

A1.4 Applications to Functional Imaging 

Especially relevant to the discussion of the BOLD signal used extensively in fMRI is the 

concept of magnetic susceptibility. Magnetic susceptibility refers to degree to which a material 

becomes magnetized when placed in a magnetic field. In addition to the forces discussed earlier, 

another effect of placing a sample in a magnetic field is that the local magnetic field is distorted 

by the interaction of internal dipole moments in the material with the field. The effective 

magnetic field around an object is then distorted by the geometry and susceptibility of that 

object. These distortions alter the local magnetic field and thus the resonant frequency of the 
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hydrogen molecule. Difference in susceptibility between different types of materials in the brain 

can cause signal reductions. For instance, sinus cavities filled with air can cause field distortions 

that negatively affect the surrounding MR signal. These unwanted distortions are further 

exaggerated with certain types of imaging sequences. Ironically, although susceptibility effects 

have been the cause of much grief in MRI they form the basis of BOLD based fMRI. The 

BOLD effect is the result of the differences in magnetic susceptibility of oxygenated and 

deoxygenated blood in a vessel. Figure A1.4 is a schematic of a magnetized cylinder in which 

the presence of deoxyhemoglobin within the vessel causes  magnetic field distortions in the 

surrounding space. This then increases the degree of phase dispersion, decreasing the T2*, and 

reducing the resulting MR signal.  



 

 
 

120 

 
 

 
Figure A1.4. The magnetized cylinder is a model for a blood vessel containing 
deoxyhemoglobin, showing a dipole distortion in the space around the vessel. 
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Appendix A2 
 

fMRI: Phyiological Basis 
 
 

A2.1 Neural System 

Neurons are the functional subunits of the brain and their coordinated function results in the 

seemingly limitless information processing capability of the human brain. A stark, simple view 

of population neuronal processing was put forward in 1943 by McCullough and Pitts in which 

all synaptic inputs converged into a single point neuron (McCulloch et al., 1943). In this model 

individual neurons would respond to specific environmental or internal inputs and then 

broadcast their response, via action potentials, to their postsynaptic targets. Summation of 

incoming spikes from multiple neurons would occur at each target neuron and if a given 

threshold was exceeded, the target neuron would generate a spike in response. McCullough and 

Pitts proved that a sufficiently large number of these simple logic devices, wired appropriately, 

would be capable of universal computation (McCulloch et al., 1943). This simple model 

provided insight into the importance of the coordinated function and the interconnectivity of 

neurons as a basis for their ability to process information.  The brain then utilizes this 

information according to two fundamental principles of functional specialization and 

integration. Specialization refers to the localization of specific types of processing to 

anatomically distinct areas of the brain. Integration then refers to the interconnectivity of these 

specialized regions. 

One of the most well studied areas in the human brain is the visual system located in the 

occipital lobe. A brief exploration of the visual system will help highlight the role of 
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specialization and integration in the processing of information. Once visual information is 

captured in the eye it is transmitted via the optic nerve to the lateral geniculate nucleus (LGN) 

in the thalamus. The V1 region of the visual cortex then receives input directly from LGN. 

Specialization is well illustrated in V1, where the visual scene is spatially encoded in a highly 

conserved and specific manner. For example, the upper bank of the calcarine sulcus responds to 

the lower half of the visual field whereas the lower bank responds to the upper half of the visual 

field (Belliveau et al., 1991).  

V1 is responsible for the neuronal processing of spatial frequency, orientation, motion, 

direction, speed, and other visual features . Strong feedforward connections exist between V1 

and V2 and serve to carry and integrate information from V1 for further processing. V2 is tuned 

for processing of complex patterns and has connections to V3, V4, and V5 and send feedback 

connections back to V1. In addition to environmental inputs from the eyes, the visual system is 

modulated by internal sources such as attention pathways. The interconnectivity of the visual 

system exemplifies the role of information integration from specialized regions in overall 

information processing.  

In fMRI applications, the localized neural activity can be simply modeled as a inhibitory 

feedback system, in which the neural response U(t) is treated as the sum of excitatory E(t) and 

inhibitory inputs I(t). The inhibitory response is driven by the neural response and can be 

represented by: 

)()()( tItEtU −=       [1] 

1

)()(

τ
κ tItU

dt

dI −
=       [2] 

where κ and 1τ  are a gain factor and time constant, respectively(Buxton et al., 2001).This 

simple linear model allows for the incorporation of neural adaptation and refractory effects 

demonstrated experimentally. An nonlinear component may also be introduced to more 
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accuratley capture observed dynamics. By introducing a baseline level of neural activity and 

requiring the neural activity to be always positive , one can prevent post-stimulus undershoots 

that may occurr in the linear model presented above. This behavior matches a pattern originally 

proposed to describe BOLD signal nonlinearities observed in the visual cortex (Boynton et al., 

1996). The necessity of a  refractory period has also been proposed to model the diminsihing 

response to a pair of closely spaced stimuli (Buxton et al., 2004).  

Neural activity leads to increases in tissue metabolism and the firing of neuronal action 

potentials result in (1) the release of neurotransmitter into the synaptic cleft and (2) changes in 

ionic gradients(Buxton, 2002). Consequently the main cost of maintaining  homeostasis 

involves the restoration of ionic gradients and repacking of neurotransmitter molecules. 

Weighing approximately 3 lbs, the brain uses nearly 20% of the body’s energy and its demands 

are met almost exclusively by glucose oxidation, in which 90% of resting glucose consumption 

is oxidative (Buxton, 2002). Since the energy yield of glucose oxidation is much more than 

glycolysis nearly all the ATP production in the resting state is via glucose oxidation(Buxton, 

2002).  

Figure A2.1 is a representation of the cellular events associated with the cycling of 

glutamate, a neurotransmitter. It is important to note that ATP is used to extrude Na+ taken in 

along with glutamate from the synapse, convert glutamate to glutamine, and supply energy to 

the Na+/K+ pump used to restore ionic potentials. ATP is primarily  supplied by aerobic 

glycolysis in astrocytes and the excess lactate is transported to adjacent neurons to be further 

metabolized (Raichle et al., 2006).  

PET studies by Fox et al. reported that the CMRO2 and for cerebral metabolic rate of 

glucose (CMRGlu) is in a ~4:1 molar ratio further supporting the dominant role of oxidative 

mechanisms during rest(Raichle et al., 2006). With functional activation, CMRO2 is increased 

by only ~15% whereas CMRGlu and CBF are  increased ~50% (Raichle et al., 2006).  
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Figure A2.1. A representation of the metabolic events associated with the release of 
glutamate. It is important to note the role of the astrocyte in supplying ATP for the 
conversion of glutamate to glutamine, Na+\K+ pump, and the reuptake of glutamate from 

the synapse. Based on figure from (Raichle et al., 2006).  
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A2.2 Hemodynamic System 

Increases in CBF during activation serve to deliver needed nutrients (e.g. glucose and 

oxygen) and carry away byproducts of metabolism (e.g. lactate, heat). The ratio between 

relative changes in CBF with respect changes in CMRO2 with neural activity is used as a 

parameter describing neurovascular coupling (n) and is denoted (Buxton et al., 2004):  

   
1

1

0,22

0

−
−

=
∆

∆
=

m

f

CMROCMRO

CBFCBF
n     [3] 

Where f and m are CBF and CMRO2 normalized to their respective baseline values. This 

fundamental ratio forms the basis of fMRI. The basic picture of brain activation is simple: 

stimuli evoke increased activity in neuronal populations, ATP consumption increases, oxidative 

metabolism increases to restore ATP, and CBF increases to supply nutrients and carry away 

metabolic byproducts.  However, the mechanisms involved are complex. A recent review by 

Iadecola summarizes the role of activity-induced signaling mechanisms that not only involve 

neurons but also astrocytes and vascular cells.  Dilation of arterioles resulting from increased 

neural activity is dependent on Ca2+ oscillations in astrocytes (Iadecola, 2004). In addition, 

upstream vasodilation may result from intramural signaling in endothelial and smooth muscle 

cells. Despite the complete understanding of the exact mechanisms involved, it is known that 

various vasoactive agents are released following increases in neural activity that modulate the 

local cerebral blood flow  through their effect on smooth muscle cells(Iadecola, 2004). Several 

models have been introduced to describe the CBF response to neural stimulus, most relevant to 

fMRI is a model by Friston et al, who presented a simple linear second-order system to describe 

the regulation of CBF following neural activity (Friston et al., 2000).  

Hemodynamic changes involve the coupling of changes in CBF with cerebral blood volume 

and CMRO2. As the smooth muscle relaxes in response to the release of vasoactive agents, the 

resistance in the vascular tree decreases. As the resistance decreases, the pressure drop across 
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the vessels also decreases, raising the pressure in both the capillaries and veins. The vessels 

expand, increasing the cerebral blood volume. The steady-state relationship between CBF and 

CBV is described by (Grubb et al., 1974): 

αfv =        [4] 

where v and f are  CBV and CBF normalized by their initial values, respectively. Grubb 

experimentally found that α equal to 0.38  which is in contrast to a laminar flow assumption in 

which α should equal 0.5 (Grubb et al., 1974). An analytical solution for Grubb’s empirical 

relationship can be derived by noting that the total blood volume is the sum of arteriole (Va), 

capillary(Vc), and venous blood volumes(Vv) as denoted.  

vcaT VVVV ++=       [5] 

The relationship between volume and flow in the arterial and venous compartments is governed 

by a power law relationship with the assumption of laminar flow, αL=0.5. In contrast, during 

increases in flow, the capillary compartment experiences negligible increases in volume(Fung, 

1984). Substituting expressions for the blood volume in terms of flow using the following 

relationships: 

( ) LFFVV aa

α
00, /=   ( ) LFFVV vv

α
00, /=  ( ) TFFVV TT

α
00, /=  0,cc VV =  [6] 

and solving for αT yields the analytical expression for Grubb’s constant: 

)/)//((log 0,0,0,0,0,0, TcTvTafT VVVVVVf L ++= αα      [7] 

Where f is the normalized  flow to its baseline value. Using fractional blood volumes of 0.33, 

0.46, and 0.21 for the arterial, venous, and capillary compartments(Oja et al., 1999) , 

respectively, and a physiological change in f of 50% yields a αT of 0.41. This is similar to the 

experimental value of 0.38 found by Grubbs.  

By definition, the CMRO2 is a function of the oxygen extraction fraction E, the arterial 

oxygen concentration Ca, and the CBF, as represented by(Buxton et al., 2004): 
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CBFCECMRO a ⋅⋅=2      [8] 

one can also show that the steady-state deoxyhemoglobin concentration [dHb] depends on 

CMRO2 and CBF, from basic mass conversation(Hoge et al., 1999): 

CBF

CMRO
dHb 2

4

1
][ =       [9] 

which can also be rewritten in terms of the normalized oxygen extraction fraction as 

00,2

02

0][

][

E

E

CMRO

CBF

CBF

CMRO

dHb

dHb
=⋅=    [10] 

If CMRO2 is held constant, the baseline [dHb] term is inversely proportional to the normalized 

CBF by 

CBF

CBF

dHb

dHb 0

0][

][
=       [11] 

Combining equation 3 and 10, in order to quantify dHb changes with changes in CMRO2 and 

CBF,  leads to the expression: 

nf

nf

dHb

dHb 1

][

][

0

−+
=       [12] 

From experimental observation n>1, typically in the range 2-3, which means that concentration 

of dHb would decrease with activation. The total dHb is then determined as the product of the 

CBV and dHb concentration. Incorporating Grubb’s relationship, equation 4, with equation 12,  

the total amount of dHb can be quantified by: 
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1 −⋅
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= α
f

n

nf

dHb

dHb
     [13] 

We are left with the following picture of the associated hemodynamics following neural 

activation: With activation, the CBF flow is increased much more than the CMRO2, which leads 

to increased CBV and decreases in dHb. It was the discovery that dHb modulates the MR 
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signal,as discussed in Appendix A1, that serves as a foundation for fMRI. The previously 

outlined cascade of events following evoked neural activity is illustrated in figure 1.2 of the 

Introductory chapter.  

A2.3 BOLD Signal 

In their pioneering work in 1990, Ogawa et al. found that when the mouse breathed 100% 

O2, the brain was rather uniform (Ogawa et al., 1992). However, when the mouse breathed 20% 

O2 many dark lines appeared and were localized to vessels. They also noted that the signal loss 

was greater with increased TE, suggesting that the presence of deoxygenated blood was acting 

on reducing the T2*, and equivalently increasing the R2*, of the blood (Ogawa et al., 1992). 

Boxerman et al. later determined that  R2* was related to CBV and [dHb], according to 

(Boxerman et al., 1995): 

β
v

dHb
dHbCBVAR ][*

2 ⋅⋅=      [14] 

where β is a constant depending on blood volume and the tissue sample,  A is a proportionality 

constant, and vdHb][ is the dHb concentration in the venous compartment. Changes in 
dHb

R
*

2  

lead to changes in signal intensity as a function of TE by the following expression: 

1
*
,2

0
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∆ ∆⋅− dHbRTE
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which for small changes in 
dHb

R
*

2  can be linearized to  
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where )][][( 00

*

,2

ββ
vvdHb dHbCBVdHbCBVAR −⋅⋅=∆  [17], substituting the expression for 

dHb
R

*

2∆ into equation 16 and non-dimensionalizing yields 
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 [18] where M represents the maximal BOLD 

signal and is equal to 
β
00 ][ vdHbCBVATEM ⋅⋅⋅=  (Hoge et al., 1999). Hoge et al. presented a 

method for calibrating the BOLD signal with administration of CO2 (Hoge et al., 1999).  Since 

CO2 modulates both resting CBF and BOLD without changes in CMRO2  it can be used to 

determine the scaling factor M. Without changes in CMRO2, the [dHb] is determined by eq 11, 

given by. 
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dHb

dHb 0
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=      [19] 

Substituting the above expression into eq. 18 along with Grubb’s equation relating CBV and 

CBF changes, eq 4,  and solving for M yields the expression: 
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With determination of M it is possible then to calculate CMRO2 changes with a functional 

paradigm. This equation and CO2 calibration methodology has proved very useful in 

interpretating steady-state fMRI experiments.  

 

A2.4 BOLD Signal Dynamics 

 In the appendix section of chapter two a dynamic model of the BOLD signal was presented. 

Here we revisit the presented model and discuss some of its characteristics.  Recall  

that the flow out of the venous compartment is governed Grubb’s relationship with viscoelastic 

effects as defined by  

dt

dv
vtf vout τα += /1)(      [21] 
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Figure A2.2. Dynamic response of the physiological quantities underlying the BOLD signal. The BOLD signal is a function  

of [dHb] and CBV which are driven by evoked responses of CBF and CMRO2.   
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the volume (v) and concentration of deoxyhemoglobin (q) are dynamically defined by  a 
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where 0τ  is the mean transit time, n is the coupling parameter, and inf  is the flow into the 

venous compartment as determined by the arteriolar compliance model. The BOLD signal is 

then determined by a signal model (Chapter 2, Eq. A17) that is a function of the state variable v 

and q along with constants determined by imaging parameters.  

 Figure A2.2 is a schematic representing the dynamics response of the various physiological 

parameters underlying the BOLD effect in fMRI. A stimulus, in this case represented by a block 

of activity, drives a neural response which reaches a peak and slowly decays as governed by 

equations  1 and 2.  The neural activity modulates the CBF response through the release of a 

vasoactive agent that acts on the smooth muscle compliance as governed by the arteriolar 

compliance model put forward in Chapter 2. The CBF response serves as an input into the 

balloon model which predicts the temporal time courses of CBV and the dHb content. The 

CMRO2 response is a reflection of the CBF response since a linear coupling was assumed. 

However, we delay the CBF response relative to the CMRO2 to reveal the initial dip in the 

depicted BOLD response. With cessation of activation the CBF response returns back to 

baseline but the CBV response remains elevated due to the viscoelastic properties of the venous 

compartment. The temporal mismatch between the CBF and CBV response leads to an 

accumulation of dHb and a post-stimulus undershoot in the BOLD response. This schematic is 

helpful in understanding the complicated interplay of the various physiological parameters 

governing the dynamics of the evoked BOLD response.  
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A2.5 ASL Signal 

ASL refers to a class of non-invasive MRI methods for the measurement of CBF and 

involve taking the difference of two sets of images: tag images, in which the magnetization of 

arterial blood is inverted or saturated, and control images in which the magnetization of arterial  

blood in fully relaxed (Golay et al., 2004). There are several variant of ASL and in a popular 

implementation, PICORE QUIPPS II (Wong et al., 1996), short RF pulses are used to invert a 

slab of blood that is proximal to the imaging region of interest. For pulsed ASL, after a time TI, 

needed to allow the tagged blood to flow into the region-of-interest, imaging is performed. In 

PICORE QUIPPS II, an additional saturation pulse is applied to the same spatial slab prior to 

imaging to create a temporally defined slab of blood. Figure A2.3 is a schematic representing a 

typical pulsed ASL experiment, in which tag and control images are acquired in an interleaved 

fashion. 

The difference in the magnetization between tag and control images is proportional to 

perfusion provided that the QUIPSS II modification is used to remove transit delay sensitivity. 

Modifying the Bloch equations to account for the PICORE QUIPPS II imaging sequence, the 

signal difference between control and tag acquisitions, ∆M, measured at time TI
2
, is given by:  

AT
TI

A eTIMfTIM ,1

2

102 2)(
−

⋅=∆ α     [23] 

where f is cerebral blood flow, TI
1 
is the time of the QUIPSS saturation pulse (and therefore 

defines the tag duration), α is the labeling efficiency, T
1A 

is the longitudinal relaxation time for 

arterial blood, and M
0A 

is the equilibrium magnetization of arterial blood at time TE, where TE 

is the echo time.  

ASL methods measure a physiological quantity tightly linked to neural activity which can 

be used to  greatly enhance the interpretation of fMRI experiments. As compared to BOLD, 

ASL measures also have the potential for providing greater localization of the sites of neural 
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activity. (Duong et al., 2001; Luh et al., 2000). However, ASL methods have been limited in use 

because they have a low signal-to-noise (SNR) which reflects the fact that the CBF signal is a 

small fraction of the overall magnetic resonance signal from the tissue. 

For a quantitative exploration of the inherent low sensitivity of ASL experiments we begin 

by defining the standard unit of measurement for CBF as (milliliters of blood)/(100 grams of 

tissue)/ (minute), with a typical value in the human brain is 60 ml/(100 g)/minute. Assuming an 

average brain tissue density of 1 g/ml, the average CBF may also be written as 60 ml/(100  

ml)/minute = 0.01 s-1. In a typical ASL experiment, about 1 second is allowed for the delivery 

of blood. This corresponds to 1 ml of blood delivered to 100 ml of tissue. As a result, the overall 

magnetic resonance signal due to increased blood is 1 % of the total tissue signal. Since the 

ASL signal is a relatively small proportion of the acquired MR signal it is more easily 

confounded by the presence of physiological noise than the BOLD signal. 
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Figure A2.3. Schematic for a basic pulsed ASL method. (a) During a tag acquisition, the blood in a proximal slab is inverted, 

whereas in a control image there is no inversion. (g) The difference in the  between the magnetization of the tag and control 

images is then proportional to the amount of blood flow in the imaging slice. 
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