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A component based method (CompCor) for the reduction of noise in
both blood oxygenation level-dependent (BOLD) and perfusion-
based functional magnetic resonance imaging (fMRI) data is
presented. In the proposed method, significant principal components
are derived from noise regions-of-interest (ROI) in which the time
series data are unlikely to be modulated by neural activity. These
components are then included as nuisance parameters within general
linear models for BOLD and perfusion-based fMRI time series data.
Two approaches for the determination of the noise ROI are
considered. The first method uses high-resolution anatomical data
to define a region of interest composed primarily of white matter and
cerebrospinal fluid, while the second method defines a region based
upon the temporal standard deviation of the time series data. With
the application of CompCor, the temporal standard deviation of
resting-state perfusion and BOLD data in gray matter regions was
significantly reduced as compared to either no correction or the
application of a previously described retrospective image based
correction scheme (RETROICOR). For both functional perfusion
and BOLD data, the application of CompCor significantly increased
the number of activated voxels as compared to no correction. In
addition, for functional BOLD data, there were significantly more
activated voxels detected with CompCor as compared to RETRO-
ICOR. In comparison to RETROICOR, CompCor has the advantage
of not requiring external monitoring of physiological fluctuations.
© 2007 Elsevier Inc. All rights reserved.

Introduction

Over the last decade, blood oxygenation level-dependent
(BOLD) and perfusion-based functional magnetic resonance
imaging (fMRI) have become indispensable tools for studies of
the working brain. When utilized together, the BOLD and
perfusion signals can provide a quantitative understanding of the
metabolic response to neural activity and provide insight into
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neurovascular coupling mechanisms (Hoge et al., 1999). However,
as the fMRI community has moved to higher field strengths,
physiological noise has become an increasingly important
confound limiting the sensitivity and the application of fMRI
studies (Kruger and Glover, 2001; Liu et al., 2006).

Physiological fluctuations have been shown to be a significant
source of noise in BOLD fMRI experiments, with an even greater
effect in perfusion-based fMRI utilizing arterial spin labeling
(ASL) techniques (Kruger and Glover, 2001; Restom et al., 2006).
Physiological sources of noise primarily include cardiac pulsations
and respiratory-induced modulations of the main magnetic field.
Additional sources include blood flow changes coupled to end-
tidal C02 and vasomotion occurring at 0.1 Hz (Hu et al., 1995;
Dagli et al., 1999; Glover et al., 2000a).

Approaches to removing cardiac and respiratory related noise
include temporal filtering, image-based retrospective correction
(RETROICOR), k-space-based correction (RETROKCOR) and
navigator echo-based correction (DORK) (Hu et al., 1995; Biswal
et al., 1996; Josephs et al., 1997; Glover et al., 2000a; Pfeuffer et
al., 2002). More recently, RETROICOR has been extended to a
general linear model (GLM) framework (Lund et al., 2006) and
modified for use in ASL studies (Restom et al., 2006). A recent
adaptation for BOLD-based imaging employs additional regressors
describing variations in respiratory volume (Birn et al., 2006).

An alternate approach to the use of external measures of
physiological activity or specially modified pulse sequences is to
globally subtract average time courses from regions unlikely to be
associated with neural activity, such as ventricles and large vessels
(Petersen et al., 1998; Lund and Hanson, 2001). However, since this
technique removes only the average time series, it is unable to account
for voxel-specific phase differences in the noise due to physiological
fluctuations. Additionally, component-based techniques, utilizing
independent component analysis (ICA) or principal component
analysis (PCA), have shown potential in identifying spatial and
temporal patterns of structured noise (Thomas et al., 2002; McKeown
et al., 2003; Beckmann and Smith, 2004). However, the utility of
component-based methods has been limited to BOLD studies with
sampling times short enough to clearly differentiate cardiac and
respiratory elements from evoked responses (Thomas et al., 2002), in
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Fig. 1. Schematic of the CompCor algorithm in which significant
principal components derived from time series data within noise regions-
of-interest (nROI) are used to form an estimate Pest of the physiological
noise matrix P. Incorporation of Pest into the general linear model for the
signal in gray matter allows for estimation and removal of physiological
fluctuations.
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which case a temporal band pass filter would be adequate for noise
removal.

In this paper we present and characterize a novel component-
based method (CompCor) for the correction of physiological noise
in BOLD and perfusion-based fMRI. We show that principal
components derived from noise regions-of-interest (ROI) are able
to accurately describe physiological noise processes in gray matter
regions. In our presentation we investigate the use of two different
methods for determining noise ROIs. The first method uses
anatomical data to identify white matter and CSF voxels, while the
second method uses the temporal standard deviation (tSTD) of the
time series data to identify voxels dominated by physiological
noise. We show that the use of principal components derived from
a noise ROI as nuisance regressors in a GLM of the fMRI signal
can significantly reduce the temporal standard deviation in resting-
state scans and increase the sensitivity of functional BOLD and
perfusion-based studies.

Theory

CompCor algorithm

The underlying assumption in the CompCor algorithm is that
signal from a noise ROI can be used to accurately model
physiological fluctuations in gray matter regions. The term “noise
ROI” refers to areas (e.g., white matter, ventricles, large vessels) in
which temporal fluctuations are unlikely to be modulated by neural
activity and are primarily a reflection of physiological noise. The
ability to model gray matter physiological noise elements is then
predicated on the similarity between physiological fluctuations in
the noise ROI and gray matter. A principal component analysis
(PCA) is used to compactly characterize the time series data from
the noise ROI. Significant principal components are then
introduced as covariates in a general linear model (GLM) as an
estimate of the physiological noise signal space.

In this paper we investigate the use of two methods for
determining the noise ROI. The first method uses anatomical data
to identify voxels that consist primarily of either white matter or
cerebrospinal fluid (CSF). Since neural activation is localized to
gray matter, fluctuations in white matter and CSF regions should
primarily reflect signals of non-neural origin, such as cardiac and
respiratory fluctuations.

In the second method, voxels with high temporal standard
deviation (tSTD) are used to define a noise ROI. This approach is
based on previous preliminary work by Lund et al. (2001) in which
areas of high temporal standard deviation were found to
correspond to ventricles, edge regions, and vessels. The advantage
of this method is that it utilizes the time series data to identify a
noise ROI without the need for an anatomical scan.

General linear model for ASL and BOLD

The general linear model for the BOLD-weighted data can be
written as

b ¼ Xhþ Sdþ Pcþ n ð1Þ

where b represents the measured BOLD data, Xh represents the
stimulus response where X is a N×k design matrix and h is a k×1
vector of hemodynamic parameters. In the case of a block design,
X reduces to a vector containing the smoothed stimulus pattern and
h reduces to a scalar representing the unknown amplitude.
Nuisance parameters are integrated in Sd, where S is a N× l
matrix comprised of l nuisance model functions and d is a l×1
vector of nuisance parameters. We have also added physiological
noise terms Pc where P is a N×m matrix containing m regressors
and c represents the unknown regressor weights. Finally, n repre-
sents the additive noise term.

A general linear model (GLM) for ASL data in gray matter can
be written as

p ¼ XhBOLD þMXhperf þ Sdþ Pcþ n ð2Þ

where p is the acquired raw data representing interleaved tag and
control images. In this model, the term modeling perfusion Xhperf
is modulated by a diagonal matrix,M, consisting of alternating −1s
and 1s for the tag and control images, respectively (Mumford et al.,
2006; Restom et al., 2006). The term XhBOLD models a BOLD
weighted static tissue component.

In a noise ROI, where we expect no stimulus-related response,
the GLM reduces to b=Sd+Pc+n or p=Sd+Pc+n for BOLD
and perfusion data, respectively. An assumption of CompCor is
that the space spanned by the significant principal components
from the noise ROI can be used to estimate the space spanned by
the columns of the physiological regressor matrix P.

Fig. 1 depicts the basic algorithm in which significant principal
components from a noise ROI are used to form a physiological



Fig. 2. Areas with a high fraction of white matter and cerebrospinal fluid
(CSF), as denoted by the magenta voxels, overlaid on their respective partial
volume maps from a representative slice from Subject 1. White-matter-only
areas (panel a) were determined by first thresholding the white matter partial
volume fraction map at 0.99 and then performing a map erosion by two
pixels to minimize the effect of partial voluming with other tissue types.
Panel b displays CSF-only areas with a partial volume fraction greater than
0.99 with application of a nearest neighbor clustering criteria.
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noise matrix Pest which is then used as an estimate of P in the
GLM. For functional studies, an added processing step is included
to minimize the possibility of including stimulus related fluctua-
tions. In this step, a preliminary GLM analysis, using the
appropriate design matrix X, is used to exclude voxels from the
noise ROI with a calculated p-value less than 0.2. Additional
details are provided in the Methods section.

Methods

Experimental protocol

Ten healthy subjects (ages 23 to 39) participated in the study
after giving informed consent. Each subject viewed one periodic
single trial visual stimulus consisting of a 20-s initial “off” period
followed by 5 cycles of a 4-s “on” period and a 40-s “off” period.
In addition to a periodic design, each subject viewed one block
design consisting of 4 cycles of a 20-s “on” period and a 40-s
“off” period. During the “on” periods, a full-field, full contrast
radial 8-Hz flickering checkerboard was displayed, while the
“off” periods consisted of a gray background of luminance equal
to the average luminance of the “on” period. All subjects also
underwent two resting-state scans (one for perfusion and one for
BOLD), during which the subject was presented with the “off”
condition for 3 min.

Imaging protocol

Imaging data were collected on a GE Signa Excite 3-T whole
body system with a body transmit coil and an eight-channel
receive coil. During the perfusion resting-state scan and the block
design scan, data were acquired with a PICORE QUIPPS II
(Wong et al., 1998) arterial spin labeling (ASL) sequence
(TR=2 s, TI1/TI2=600/1500 ms, 10-cm tag thickness, and a 1-
cm tag-slice gap) with a dual echo spiral readout (TE1/TE2=9.1/
30 ms, FOV=24 cm, 64×64 matrix, and a flip angle=90°).
Small bipolar crusher gradients were included to reduce signal
from large vessels (b=2 s/mm2). Three oblique axial 8-mm slices
were prescribed about the calcarine sulcus for this ASL run. The
first echo data were used for the analysis of the perfusion
response and are referred to as the ASL or perfusion signal, while
the second echo data were used for the analysis of the BOLD
response and are referred to as the 2nd echo BOLD signal.
During the periodic single trial runs, BOLD-weighted images
were acquired with a spiral readout (TE=25 ms, TR=500 ms,
FOV=24 cm, 64×64 matrix, and a flip angle of 45°) and the
same slice prescription as the ASL runs. The second resting-state
scan was acquired with the following BOLD imaging parameters
(TE=25 ms, TR=250 ms, FOV=24 cm, 64×64 matrix, and a
flip angle of 40°).

A high-resolution structural scan was acquired with a magnetiza-
tion prepared 3D fast spoiled gradient acquisition in the steady-state
(FSPGR) sequence (TI 450 ms, TR 7.9 ms, TE 3.1 ms, 12° flip
angle, FOV 25×25×16 cm, matrix 256×256×124).

Cardiac pulse and respiratory effort data were monitored using
a pulse oximeter (InVivo) and a respiratory effort transducer
(BIOPAC), respectively. The pulse oximeter was placed on the
subject's left index finger, and the respiratory effort belt was placed
around the subject's abdomen. Physiological data were sampled at
40 samples per second using a multi-channel data acquisition board
(National Instruments).
Data analysis

Anatomical definition of noise ROI
Anatomical data were segmented into gray matter, white matter,

and CSF partial volume maps using the FAST algorithm available
in the FSL software package (Smith et al., 2004). Tissue partial
volume maps were linearly interpolated to the resolution of the
functional data series using AFNI (Cox, 1996). In order to form
white matter ROIs, the white matter partial volume maps were
thresholded at a partial volume fraction of 0.99 and then eroded by
two voxels in each direction to further minimize partial voluming
with gray matter. CSF voxels were determined by first thresholding
the CSF partial volume maps at 0.99 and then applying a three-
dimensional nearest neighbor criteria to minimize multiple tissue
partial voluming. Since CSF regions are typically small compared
to white matter regions mask, erosion was not applied.

CSF and white matter ROIs were combined to form the ana-
tomical noise ROI. Fig. 2 depicts white matter and CSF ROIs for
Subject 1, as denoted by the magenta voxels, overlaid on their
respective partial volume maps. We refer to the application of
CompCor with the anatomical noise ROI as aCompCor.
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tSTD-based determination of noise ROI
In a preliminary abstract, Lund and Hanson (2001) showed that

voxel time courses with a relatively high temporal standard
deviation were dominated by physiological noise. They observed
that these voxels occurred in edge regions, ventricles, and in areas
close to large vessels. In their approach, they manually selected
five pixels with high temporal standard deviation (tSTD) that
appeared to represent physiological fluctuation. The time series
from these voxels were then included as nuisance covariates in a
GLM, resulting in a marked improvement in detection power
(Lund and Hanson, 2001). Here we extend the prior work by first
using the temporal standard deviation to select voxels in an
unsupervised fashion and then using principal component analysis
to reduce the dimensionality of the data. For each voxel time series,
the temporal standard deviation is defined as the standard deviation
of the time series after the removal of low-frequency nuisance
terms (e.g., linear and quadratic drift). We denote the noise ROI
determined in this fashion as the tSTD noise ROI and refer to the
application of CompCor with this ROI as tCompCor.

To confirm that the tSTD metric identifies voxels with high
levels of physiological noise, we first examined the relation
between measures of physiological noise and tSTD. For each
voxel, we defined the fractional variance of physiological noise as
the ratio of the variance of the voxel time series accounted for by
physiological noise regressors as determined with RETROICOR
(see section on GLM analysis below) to the variance of the original
Fig. 3. Panel a shows a spatial map of the fractional variance of physiological n
Panel b shows a spatial map of the temporal standard deviation (tSTD). Areas of
tSTD. Panel c compares the tSTD to the fractional variance of physiological nois
slice with the highest tSTD.
time series after removal of constant and linear trends (e.g., the
square of tSTD). The fractional variance of physiological noise
was then compared to the temporal standard deviation on a per-
voxel basis. Fig. 3 shows spatial maps of the fractional variance
and tSTD (panels a and b respectively) as well as a plot of tSTD
versus fractional variance for a representative slice from Subject 1.
As demonstrated by the plot in panel c and the similarity of the
spatial maps, the voxels with the highest tSTD also tend to have the
highest fractional variance of physiological noise, confirming the
observations of Lund and Hanson (2001).

To construct the tSTD noise ROI, we sorted the voxels by their
temporal standard deviation and retained a pre-specified upper
fraction of the sorted voxels within each slice. For example,
specification of an upper fraction of 1% retains the voxels with the
top 1% of temporal standard deviation values. Specification of the
fraction involves a trade-off between including too few voxels to
accurately represent the physiological noise space versus including
too many voxels, which would tend to include voxels whose
temporal standard deviation is not dominated by physiological
noise. To empirically determine a reasonable value to use for the
upper fraction, we computed the mean fractional variance of
physiological noise across voxels within the tSTD ROI as a
function of the upper fraction. This analysis was performed for
each subject for both resting ASL and BOLD runs. Fig. 4 presents
the mean across subjects of the fractional variance of physiological
noise versus the fraction of included voxels. As a greater number
oise for the resting BOLD scan from a representative slice in Subject 1.
high fractional variance of physiological noise correspond to areas of high
e on per-voxel basis. Data points in red represent the 2% of voxels in the
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of voxels are included in the analysis, the average fractional
variance of physiological noise decreases for both ASL and BOLD
resting runs. Both the ASL and BOLD curves show a steady
decline in the fractional variance above a threshold of approxi-
mately 2%. Based on these results, we chose a 2% threshold
(∼20–30 voxels per slice) as a reasonable empirical threshold that
effectively identified voxels with the highest fractional variance of
physiological noise.

Exclusion of stimulus-related components
Although the construction of the noise ROIs is designed to

include voxels that are unlikely to include stimulus-correlated
activity, there is always a finite probability that some voxels may
contain stimulus-related components. Inclusion of these voxels in
the noise ROI will tend to reduce the statistical performance of the
CompCor algorithm because stimulus-related components will be
treated as physiological noise components. To minimize the
probability of including voxels with stimulus-related components,
we correlated the time course of each voxel within the noise ROI
with the stimulus-related reference function and excluded any
voxels with a p-value less than 0.2. To assess the effect of this
threshold on performance, we performed Monte Carlo simulations
to generate receiver operating characteristic (ROC) curves at
various threshold levels and used the area under the ROC curve to
quantify performance. An area of 1 represents ideal performance.

Simulated voxel responses (N=5000) were generated using the
BOLD GLM presented in Eq. (1). Physiological regressors, P, were
generated at frequencies consistent with cardiac (0.9 Hz) and
respiration (0.3 Hz) with uniformly distributed phases to represent
phase lags between voxels. Physiological noise weights, c, were
chosen from a normal distribution N(0, 0.3). A constant term was
included as a nuisance term with the regressor weight d chosen
from a uniform distribution U(0, 1), and the additive white noise
term, n, was generated from a normal distribution N(0, 1). The
block stimulus paradigm was used to construct the stimulus design
Fig. 4. Mean fractional variance of physiological noise across subjects as a
function of the fraction of voxels (sorted by tSTD) that is included in the
noise ROI for BOLD (red) and ASL (blue) resting-state data. The black
dotted line denotes the 2% threshold that is used in the present study.
matrix X, and the stimulus weight h was set to a value of either 0
or 0.3 for the null and alternative hypotheses, respectively.
Correlation of the simulated voxel responses with the block
stimulus response was used to calculate p-values and z-scores for
each condition. In the null hypothesis condition, the distribution of
z-scores had a mean and standard deviation of −0.31 and 0.89,
respectively, whereas in the alternative hypothesis condition the
mean and standard deviation were 3.18 and 1.27, respectively.

To construct the ROC curve, we varied the threshold on p-
values from 0.01 to 1.0. For each threshold value, voxel time series
with a p-value above the threshold were placed column-wise into a
matrix M. A principal component analysis of the matrix M (see
details in following section) was then used to form an estimate of
the physiological noise matrix Pest. A GLM analysis of the
simulated voxel time series was performed using the idealized
stimulus response X and the computed Pest. The calculated p-
values obtained under the null and alternative hypothesis
conditions were then used to generate a ROC curve for each
threshold value.

As the exclusion threshold was reduced from p=1.0 down to
p=0.1, there was little degradation in detector performance (area
under the ROC curve N0.99), since voxels with any hint of
activation were effectively excluded. As the threshold was further
reduced from 0.1 to 0.05, the ROC area decreased from 0.99 down
to a value of 0.96, which is less than the area (0.98) obtained in the
absence of CompCor (e.g., Pest not included in the GLM). The
degradation in performance with lower p-values reflects the
inclusion of weak stimulus-correlated components. Based on these
findings, we chose a conservative threshold of p=0.2 to exclude
voxels with stimulus-correlated fluctuations.

Determination of principal components
Voxel time series from the noise ROI (either anatomical or tSTD)

were placed in a matrix M of size N×m, with time along the row
dimension and voxels along the column dimension. The constant
and linear trends of the columns in the matrixMwere removed prior
to column-wise variance normalization. The covariance matrix
C=MMT was constructed and decomposed into its principal
components using a singular value decomposition.

The number of significant principal components to retain was
determined using a modified version of the “broken stick”
method described in Jackson (1993). This method identifies
meaningful principal components (e.g., components unlikely to
be due to random noise) by comparing their associated principal
values to principal values derived from normally distributed data
of equal rank. Ordered principal values calculated from normally
distributed data tend to show a sharp initial decrease followed by
a more gradual decrease, thus resembling a “broken-stick”. In
this method, a Monte Carlo simulation (N=1000) was first used
to generate a statistical representation of expected principal
values derived from normally distributed data of rank equal to
the matrix M. This statistical distribution was then compared to
the computed principal values from the data. Principal compo-
nents that were significantly larger than the generated distribu-
tion, as assessed using a two-tailed t-test (pb0.05), were
retained. Based on this method, we found an average of 6.3±
0.52 and 4.5±0.38 significant principal components for BOLD
and ASL runs, respectively, when using the anatomical noise
ROI. For the tSTD noise ROI there were an average of 5.9±0.74
and 4.2±0.59 principal components for the BOLD and ASL
runs, respectively.
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General linear model analysis
All images were coregistered using AFNI software (Cox,

1996). Statistical inference was performed using a general linear
model (GLM) analysis with an AR(1) model for the additive noise
component (Burock and Dale, 2000; Woolrich et al., 2001). The
analysis was performed using the appropriate GLM for the BOLD
and ASL time series under the following conditions: (1) no
inclusion of physiological noise regressors (e.g., no correction), (2)
inclusion of RETROICOR regressors, (3) inclusion of CompCor
regressors derived from the anatomical noise ROI (aCompCor),
and (4) inclusion of CompCor regressors derived from the tSTD
noise ROI (tCompCor). The stimulus-related component Xh was
formed by convolving the appropriate stimulus pattern with a
gamma density function of the form h(t)= (τn!)− 1((t−Δt) /τ) exp
(− (t−Δt) /τ) for t≥Δt and 0 otherwise, with τ=1.2, n=3 and
Δt=1 (Boynton et al., 1996). As nuisance regressors, we used a
constant term, a linear term, and a discrete cosine set implemented
in SPM2 with a minimum period of 120 s (Worsley and Friston,
1995; Lund et al., 2006). For statistical inference with RETRO-
ICOR, physiological noise regressors obtained from the cardiac
and respiratory measurements were used to form the physiological
noise matrix P (Glover et al., 2000b; Restom et al., 2006). In
addition, estimates of the cardiac and respiratory components were
formed from partitioning the estimate of Pc (i.e., PCcC and PRcR
where the C and R subscripts denote cardiac and respiratory,
respectively). For the application of aCompCor and tCompCor,
GLM analysis was performed using noise matrix Pest, constructed
from the principal component analysis of voxel time series from
the anatomical noise ROI and the tSTD noise ROI, respectively.
The estimate of the term Pestc was used as the CompCor estimate
of the physiological noise component.

For each method, we formed a “corrected time series” by
subtracting the estimates of the physiological noise components
and the nuisance parameters from the measured time series. We
then used these corrected time series to compute, on a per-subject
basis, the mean temporal standard deviation of the resting-state
data across all voxels within gray matter (partial volume N0.9).
Paired t-tests (two-tailed) were used to assess differences between
methods across the sample of subjects.

The number of activated voxels detected with each method was
computed for each subject by thresholding the F-statistics at 5 and
30 for the ASL and BOLD functional runs, respectively. These
values were chosen to yield approximately the same number of
activated voxels for the ASL and BOLD functional runs and are
consistent with thresholds previously used to investigate physio-
logical noise reduction for ASL (Restom et al., 2006). Paired t-
tests (two-tailed) were used to assess differences in the number of
activated voxels.

Spectral analysis
We used spectral analysis to compare the physiological

components estimated by RETROICOR with those estimated by
CompCor. For each subject, we computed the power spectra of the
physiological noise components estimated with each method on a
per-voxel basis, normalized each power spectrum by its peak
value, and then averaged the normalized spectra across all voxels
in gray matter (partial volume N0.9). The RETROICOR power
spectra were used to identify the peak cardiac and respiratory
frequencies. We defined cardiac and respiratory frequency bands as
the 0.1 Hz wide band of frequencies centered around the respective
peak frequency. To quantify the similarity between methods of the
spectra in these bands, we computed the band-averaged coherence
Cohxy (fband) defined as

Cohxy fbandð Þ ¼

�
�
�
�
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f band
Sxyðf Þ

�
�
�
�
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f band
Sxxðf Þ

P

f band
Syyðf Þ

where fband denotes the frequency band, x and y are the two time
series of interest, Sxy (f) is the cross-spectrum of x and y, and Sxx (f)
and Syy (f) are the power spectra of x and y, respectively (Sun et al.,
2004). The cross-spectral and power-spectral densities are
estimated using Welch's modified periodogram averaging method
as previously outlined by Sun et al. (2004). Coherence is bounded
by 0 and 1, with 1 representing perfect coherence, and is analogous
to correlation analysis of time series. The spectral coherence
between physiological noise elements was computed on a per-
voxel basis and then averaged across gray matter voxels (partial
volume N0.9).

Additional analysis of BOLD data with TR of 2 s
Although the physiological noise in the BOLD time series is

critically sampled given the short TRs of 0.25 and 0.5 s for resting-
state and functional runs, respectively, the cardiac and respiratory
noise fluctuations in the ASL perfusion time series will typically be
aliased due to the lower sampling rate (TR=2 s). In the results
section we show that both aCompCor and tCompCor are capable
of identifying these aliased components. To further demonstrate the
performance of aCompCor and tCompCor for undersampled data,
we downsampled the data by factors of 4 and 8 for the functional
and resting-state runs, respectively, to generate BOLD time series
with a TR of 2 s and analyzed the performance of the CompCor
methods using the GLM analysis approach described above. We
also applied CompCor to the BOLD-weighted second echo data
from the ASL time series (TR of 2 s), using the GLM in Eq. (2)
with hBOLD as the parameter of interest.

Receiver operating characteristic curve
To gain additional insight into the relative performance of the

CompCor methods, we used simulations to construct receiver
operating characteristic (ROC) curves. For these simulations, we
first defined a region of interest (ROI) in the visual cortex based on
GLM analysis (with tCompCor regressors) of the 2nd echo BOLD
data from the block design functional runs. For each subject, a liberal
threshold (rN0.2) was used to delimit an ROI with approximately
400 to 500 voxels. These voxels were then used for the subsequent
simulations, which made use of the BOLD resting-state data. For
each method, the false positive rates at varying thresholds were
calculated by applying theGLManalysis to the resting-state data and
computing the fraction of false positives within the ROI. To
determine the true positive rates, we added simulated activations
(block design: 20 s on, 40 s off; 1% amplitude) to the time course of
each voxel within the ROI. At each threshold level, we then
computed the fraction of true positives within the ROI.

Performance of tCompCor in the presence of motion
As the tCompCor approach is based on the identification of

voxel time series with high temporal standard deviations, it will
also identify voxels with large signal components due to subject
motion. Motion-related signal changes can reflect both simple
linear effects (e.g., translation and rotation of brain regions) and



96 Y. Behzadi et al. / NeuroImage 37 (2007) 90–101
more complex nonlinear effects, such as changes in the distortion
and blurring of the image due to magnetic field inhomogeneities.
To the extent that motion-related signal changes increase the
temporal standard deviation of the time series, these changes can
be reflected in the principal components identified by tCompCor.
In the presence of stimulus-correlated motion, the exclusion
process described previously will bias against the inclusion of time
series with stimulus-correlated changes. As a demonstration of the
application of tCompCor in the presence of subject motion, we
analyzed a BOLD (TR=0.5 s) time series in which there was
significant subject motion. The data were acquired during a
periodic single trial run with the protocol and imaging parameters
described above. To emphasize the effect of motion, we applied
tCompCor to data that were not motion corrected. Estimates of
rotation and displacement during the experiment were obtained
with the 3dvolreg program in AFNI.

Results

Fig. 5 shows normalized power spectra of physiological
components estimated by RETROICOR, aCompCor, and tComp-
Cor for the resting-state BOLD run of Subject 1. The top row
(panel a) depicts the respiratory and cardiac components identified
Fig. 5. Average normalized power spectra of components estimated with the applic
As shown in panel a, cardiac and respiratory elements estimated by RETROICOR a
or tCompCor (panel c) estimates components similar to the cardiac and respirator
with the use of RETROICOR. Cardiac and respiratory peaks are
located prominently at∼1.2 Hz and∼0.2 Hz, respectively. Panels b
and c show the average spectra of elements estimated by aCompCor
and tCompCor, respectively. Both variants of CompCor estimate
cardiac and respiratory elements that are similar to those removed by
RETROICOR. In addition, very low frequency 1/f components are
visible in both the aCompCor and tCompCor spectra. These low-
frequency components can appear in the CompCor spectra because
we remove only constant and linear trend terms prior to the principal
component analysis. Note that, as stated in the Methods section, the
use of the discrete cosine transform (DCT) low-frequency nuisance
terms is reserved for the statistical assessments performed with the
GLM. As a result, the space spanned by the principal components
may partially overlap with the space spanned by the discrete cosine
transform nuisance terms. Potential issues with this overlap are
addressed in the Discussion section.

Fig. 6 shows the average spectra from Subject 1 of the noise
elements estimated from the resting-state ASL data. In the top row,
the RETROICOR estimated cardiac (red line) and respiratory (green
line) elements are aliased due to the long TR. The spectrum of
elements estimated by either aCompCor (panel b) and tCompCor
(panel c) shows components consistent with the cardiac and
respiratory elements identified by RETROICOR.
ation of various correction schemes to the resting BOLD run from Subject 1.
re located at 1.2 and 0.2 Hz, respectively. Application of aCompCor (panel b)
y elements identified by RETROICOR.



Fig. 6. Average normalized power spectra of components estimated by the various correction schemes for the resting ASL run from Subject 1. As shown in panel
a, cardiac (red) and respiratory (green) elements identified by RETROICOR are aliased due to the long TR. The power spectrum of components estimated by
either aCompCor (panel b) or tCompCor (panel c) is similar to the sum of the cardiac and respiratory elements identified by RETROICOR.
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To quantify the similarity between the spectra, we used the
spectral coherence analysis described above in Methods. For
aCompCor applied to the resting BOLD runs, the average
spectral coherence and standard error values across subjects
(N=10) were 0.67±0.08 and 0.80±0.05 for respiratory and
cardiac elements, respectively. Corresponding values for tComp-
Cor were 0.62±0.10 and 0.86±0.07. For resting ASL runs the
mean spectral coherences when using aCompCor were 0.79±
0.03 and 0.65±0.06 for respiratory and cardiac elements, respec-
tively, with corresponding values of 0.82±0.03 and 0.69±0.06 for
tCompCor.

The effects of CompCor and RETROICOR on the average
temporal standard deviation (tSTD) of the resting BOLD and ASL
data are shown in Fig. 7, with associated standard error bars. The
panels show the normalized mean temporal standard deviation
(tSTD) in gray matter (partial voluming N0.9) for (a) resting
TR=0.25 s BOLD data, (b) downsampled (TR=2 s) resting BOLD
data, (c) resting 1st echo ASL (perfusion) data, and (d) resting 2nd
echo BOLD data, with the application of RETROICOR and the
two variants of CompCor. For each subject, the tSTD values
obtained with physiological noise reduction methods are normal-
ized by the values obtained for the uncorrected time series. The
standard error bars are provided to give a sense of the inter-subject
variability, but should not be used to interpret statistical
significance, since paired t-tests are used to compare the normal-
ized tSTD values between methods.

As compared to no correction, RETROICOR significantly
(pb0.001) reduced the normalized tSTD in the resting
(TR=0.25 s) BOLD data by 8% whereas application of aCompCor
and tCompCor resulted in even greater reductions of 20%
(pb0.001) and 29% (pb0.001), respectively. Both variants of
CompCor significantly (pb0.02) reduced the tSTD as compared to
RETROICOR, and tCompCor significantly (pb0.001) reduced the
tSTD compared to aCompCor. For the downsampled (TR=2 s)
BOLD data, all three methods significantly (pb0.001) reduced the
normalized tSTD with percent decreases of 12%, 17% and 22% for
RETROICOR, aCompCor, and tCompCor, respectively. In addi-
tion, the normalized tSTD values achieved with tCompCor were
significantly (pb0.03) lower than the values obtained with either
RETROICOR or aCompCor.

For the resting 1st echo ASL data, all three methods significantly
(pb0.001) reduced the normalized tSTD with percent decreases of
13%, 18%, and 23%. The normalized tSTD values obtained with
aCompCor and tCompCor were significantly (pb0.04) lower than
the values obtained with RETROICOR. In addition, the tSTD
obtained with tCompCor were significantly (pb0.03) lower than the



Fig. 7. Percent temporal standard deviation across gray matter voxels (partial volume N0.9) for uncorrected data (denoted as None) and data after application of
RETROICOR (denoted as Phys) and CompCor for (a) resting-state BOLD data, (b) downsampled resting-state BOLD data, (c) first-echo resting-state ASL
perfusion data, and (d) second-echo resting-state BOLD data. Values are normalized on a per-subject basis by the mean temporal standard deviation for the
uncorrected data, so that the values for the uncorrected data are 100%. Diamonds represent a significant difference (pb0.05) between the percent temporal
standard deviation when no correction is applied and the standard deviation after removal of physiological noise with use of either RETROICOR or the two
variants of CompCor. Circles and squares represent significant (pb0.05) differences as compared to RETROICOR or aCompCor, respectively. A paired t-test
was used to assess significance. Error bars represent the standard error across subjects (N=10).
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values obtained with aCompCor. Similarly, for the resting 2nd echo
BOLD data, the three methods led to significant (pb0.001)
reductions in tSTD with percent decreases of 13%, 19%, and
21%. Both aCompCor and tCompCor lead to significantly greater
reductions (pb0.01) than RETROICOR.

Bar graphs comparing the effect of the various correction
schemes on the normalized number of activated voxels for the
BOLD periodic and functional ASL block runs are shown in Fig. 8.
For each method, the number of activated voxels is normalized on a
per-subject basis by the number of voxels detected for the data prior
to the application of noise reduction. As with the plots in Fig. 7,
since statistical significance is assessed with paired tests, the
standard errors bars are provided only to give a sense of inter-subject
variability. As compared to no correction, there were significant
(pb0.02) increases of 10%, 76% and 82% in the normalized number
of activated voxels for the periodic (TR=0.5 s) BOLD runs (panel a)
with the application of RETROICOR, aCompCor, and tCompCor,
respectively. Application of either aCompCor or tCompCor
increased the number of voxels significantly (pb0.04) as compared
to RETROICOR. For the downsampled (TR=2 s) BOLD data, both
aCompCor and tCompCor significantly increased the normalized
number of activated voxels with respect to both the uncorrected data
(pb0.02) and RETROICOR (pb0.02). In addition, the number of
activated voxels with tCompCor was significantly greater (pb0.04)
than the number obtained with aCompCor.

For the first echo ASL block functional data, the normalized
number of activated voxels increased significantly (pb0.03) with
gains of 65%, 51%, and 49% with the application of RETRO-
ICOR, aCompCor, and tCompCor, respectively. There was not a
significant difference (pN0.25) between the normalized number of
activated voxels detected with the three methods. For the second
echo BOLD functional data, both aCompCor and tCompCor
significantly increased the normalized number of activated voxels
with respect to both the uncorrected data (pb0.005) and RETRO-
ICOR (pb0.005).

Fig. 9 shows a representative ROC curve comparing the relative
performances achieved without correction (blue) and the application
of RETROICOR (green), aCompCor (red), and tCompCor (cyan).
Consistent with the results shown in Fig. 8, both aCompCor and
tCompCor yield better detection performance than RETROICOR,
and the performance of tCompCor is better than that of aCompCor.

Fig. 10 shows an example of the performance of tCompCor in
the presence of signal changes due to subject motion. The top row
shows the uncorrected BOLD time series (red), the time series after
application of tCompCor (blue), and the periodic single trial
reference function (black dash line). For this run, the most
significant motion components were found to be left–right roll and
displacement. Estimates of roll in units of degrees (blue) and
displacement in units of millimeters (green) are shown in the
middle row. Note that the large motion peaking at 79 s gives rise to
a large signal change in the uncorrected time series. The bottom
row shows the top three principal components as estimated by
tCompCor. These components reflect the motion at 79 s as well as
smaller movements in other portions of the experimental run.



Fig. 8. Percent of significantly activated voxels across subjects (N=10) for uncorrected data (denoted as None) and data with application of RETROICOR
(denoted as Phys) and CompCor for (a) periodic design BOLD data, (b) downsampled periodic design BOLD data, (c) first-echo block design ASL perfusion
data, and (d) second-echo block design BOLD data. Values are normalized on a per-subject basis by the number of activated voxels for the uncorrected data, so
that the values for the uncorrected data are 100%. Diamonds represent a significant difference (pb0.05) between the percent of activated voxels when no
correction is applied and the percentage after removal of physiological noise with the use of either RETROICOR or the two variants of CompCor. Circles and
squares represent a significant (pb0.05) difference as compared to RETROICOR or aCompCor, respectively. A paired t-test was used to assess significance.
Error bars represent the standard error across subjects.
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Projecting these components out of the uncorrected time series
leads to the corrected time series, with a noticeable reduction in the
motion-related signal changes, especially at the 79-s timepoint.
Fig. 9. Representative receiver operating characteristic curve showing the
true positive rate versus false positive rate for uncorrected data (blue),
RETROICOR (green), aCompCor (red), and tCompCor (cyan).
Discussion

In this paper, we have examined whether signal components
derived from regions of interest that are unlikely to be modulated
by neural activity can be used to estimate noise components (due to
physiological fluctuations, subject motion, etc.) within activated
regions. We considered two methods for the determination of the
noise ROIs: (1) anatomical identification of significant areas of
CSF and white matter and (2) definition of noise regions based
upon their temporal standard deviation. We demonstrated that the
application of CompCor using either ROI significantly reduces the
temporal standard deviation of both resting-state BOLD and ASL
data. Additionally, we have shown that CompCor using either ROI
leads to a marked improvement in sensitivity to detect the response
to a visual stimulus, as quantified by the number of significantly
activated voxels for both BOLD and ASL experiments.

For the resting-state data, we found a significantly greater
reduction of the normalized temporal standard deviation with the
application of CompCor as compared to RETROICOR (with the
exception of aCompCor for the downsampled BOLD data). This is
most likely due to the removal of noise terms that are identified by
the principal component analysis used in CompCor but not
modeled by the RETROICOR cardiac and respiratory regressors.

For the functional BOLD runs, we found that the application of
either aCompCor or tCompCor resulted in significantly more
activated voxels as compared to RETROICOR. In contrast, for the
ASL data, there were not significant differences between the percent



Fig. 10. Example of the application of tCompCor in the presence of motion-related signal changes. The top row shows the original time series (red), the time
series after the application of tCompCor (blue), and the periodic design reference function (black dashed). The middle row shows estimates of the roll (blue) and
left–right displacement (green) time courses. The top three principal components as identified by tCompCor are shown in the bottom row.
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of activated voxels detected by either form of CompCor as compared
to RETROICOR. Due to the tag and control modulation used in the
ASL acquisition process, low-frequency noise components are
effectively attenuated in the ASL analysis process (Liu and Wong,
2005). The fact that the improved detection performance of the
CompCor methods was limited to the BOLD data suggests that the
gain reflects a reduction in low-frequency noise components that are
identified by CompCor but not by RETROICOR. As noted in the
Results section, the presence of these low-frequency components may
cause the space spanned by the principal components to overlap with
the signal space spanned by the nuisance regressors used in the general
linear model. In the unlikely case that the overlap causes the model to
be ill-posed, it may be necessary to orthogonalize the principal
components with respect to the nuisance regressors. However, we
have not found this to be necessary in practice.

The performance gains achieved with both RETROICOR and
CompCor (as compared to the uncorrected data) were observed both
for the critically sampled (TR=0.25 s and 0.5 s) BOLD data and for
the undersampled or downsampled (TR=2 s) ASL and BOLD data.
In the undersampled data, both respiratory and cardiac fluctuations
are typically aliased. With RETROICOR, these aliased components
can be identified from the external measures of cardiac and
repiratory activity, as has been previously discussed (Glover et al.,
2000b; Restom et al., 2006). In CompCor, the principal component
analysis takes advantage of the spatial coherence of the aliased
components to identify the most significant aliased components.
Because this identification procedure does not depend on the
frequencies of the physiological components, it works well even
with undersampled data. As shown by Fig. 6 and the spatial
coherence measures reported in the Results section, both RETRO-
ICOR and CompCor identify similar spectral components in both
the critically sampled and undersampled data.
The ability of CompCor to identify spatially coherent noise
components that are unlikely to be of neural origin also plays a role
in its capacity to improve performance in the presence of motion-
related signal changes. Since these effects are primarily due to bulk
motion, they will tend to give rise to spatially coherent signal
changes. Although the exact signal change in any given voxel will
depend on a variety of factors, such as the local anatomy and
magnetic field distributions, CompCor will identify those compo-
nents that are common across voxels. The performance of
CompCor in any given voxel will depend on the extent to which
these components can represent the signal changes in that voxel.
An example of the efficacy of tCompCor in removing a motion-
related signal component is shown in Fig. 10. In cases with
especially severe motion artifacts, the principal components
identified by CompCor may primarily describe the effects of
motion, thus possibly decreasing the ability of CompCor to reduce
the effect of cardiac and repiratory fluctuations. Further work to
better elucidate the limitations of CompCor in the presence of
motion would be useful.

The accurate specification of the noise ROI is key to both
aCompCor and tCompCor. As discussed in the Methods section,
inclusion of voxels with stimulus-correlated activity can reduce the
performance of the methods. For aCompCor this may occur due to
factors such as inaccuracies in tissue segmentation or misalignment
of the anatomical and functional data (e.g., due to subject
movement between the scans). For tCompCor this performance
reduction can occur when voxels with high tSTD also have
significant stimulus-correlated components (e.g., due to stimulus-
correlated motion). In the present study, we used a liberal threshold
(pb0.2) to exclude voxels with possible stimulus-correlated
components. Although our experimental data support the efficacy
of this approach for periodic and block designs, the performance of
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this approach may be reduced for complex event-related fMRI
experiments in which the expected stimulus-related response may
not be well defined. In addition, in the rare cases where the cardiac
noise is aliased to the stimulus frequency (Lund and Hanson,
2001), the exclusion criteria will reduce the ability of CompCor to
identify these noise sources. Finally, this exclusion approach is not
easily extended to resting-state experiments aimed at studying
functional connectivity. Future work addressing the applicability of
CompCor to these types of studies would be useful.

In this work we used an empirical threshold to determine the
fraction of voxels to retain in the tSTD noise ROI. While this
threshold provided better performance for the datasets analyzed in
this study, it is possible that this threshold may not be optimum for
other datasets. An examination of additional datasets would be
helpful for better characterizing the efficacy of tCompCor. In
addition, an investigation into other approaches for determining the
threshold may provide gains in performance.

Conclusion

We have shown that application of CompCor to ASL and
BOLD fMRI time series can significantly reduce noise due to
physiological fluctuations and other sources, such as subject
motion. CompCor does not require external monitoring and can be
applied in an automated fashion to reduce the confounding effect
of physiological fluctuations on fMRI time series.
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