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Abstract

Blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) studies using parallel imaging to reduce the
readout window have reported a loss in temporal signal-to-noise ratio (SNR) that is less than would be expected given a purely thermal noise
model. In this study, the impact of parallel imaging on the noise components and functional sensitivity of both BOLD and perfusion-based
fMRI data was investigated. Dual-echo arterial spin labeling data were acquired on five subjects using sensitivity encoding (SENSE), at
reduction factors (R) of 1, 2 and 3. Direct recording of cardiac and respiratory activity during data acquisition enabled the retrospective
removal of physiological noise. The temporal SNR of the perfusion time series closely followed the thermal noise prediction of a VR loss in
SNR as the readout window was shortened, with temporal SNR values (relative to the R=1 data) of 0.72 and 0.56 for the R=2 and R=3 data,
respectively, after accounting for physiological noise. However, the BOLD temporal SNR decreased more slowly than predicted even after
accounting for physiological noise, with relative temporal SNR values of 0.80 and 0.63 for the R=2 and R=3 data, respectively. Spectral
analysis revealed that the BOLD trends were dominated by low-frequency fluctuations, which were not dominant in the perfusion data due to
signal processing differences. The functional sensitivity, assessed using mean F values over activated regions of interest (ROIs), followed the
temporal SNR trends for the BOLD data. However, results for the perfusion data were more dependent on the threshold used for ROI

selection, most likely due to the inherently low SNR of functional perfusion data.
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1. Introduction

Parallel imaging techniques exploit the unique spatial
sensitivities of individual coils within a receive array to
construct a full field-of-view (FOV) image from data that is
undersampled in k-space [1]. For blood oxygenation level
dependent (BOLD) functional magnetic resonance imaging
(fMRI) studies, parallel imaging methods have been used to
decrease the readout times of single-shot echoplanar imaging
(EPI) [2] and spiral acquisitions [3]. This reduction in the
readout time was shown to increase the detection power of
BOLD fMRI studies in brain regions where magnetic
susceptibility inhomogeneities can lead to significant
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image distortions and signal loss when long readout
windows are used. Parallel imaging has also been used to
increase the spatial resolution of BOLD fMRI studies [4].

Perfusion-based fMRI with arterial spin labeling (ASL) is
finding increasing use, in part because perfusion is a
fundamental physiological quantity that may provide a
more accurate reflection and localization of neural activity
as compared to BOLD [5,6]. In addition, when used in
combination with BOLD measures, the perfusion signal can
be used to estimate functional changes in the cerebral
metabolic rate of oxygen consumption [7]. In contrast to
BOLD images, ASL images can be acquired with either short
echo time (TE) gradient echo acquisitions or spin-echo
acquisitions that significantly reduce susceptibility-related
signal losses [8]. The use of parallel imaging in ASL studies
can lead to further reductions in both susceptibility-related
distortions and TE, as recently demonstrated in a resting-state
ASL study [9].
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The cost of parallel imaging is a decrease in the image
signal-to-noise ratio (SNR) since fewer k-space samples are
acquired per image. For a single image, image SNR
decreases by gV R, where R is the reduction (or acceleration)
factor by which the acquisition window is shortened, and g is
a spatially variant noise amplification factor that is
determined by the k-space sampling strategy and coil
geometry [10]. However, it is temporal SNR rather than
single image SNR that is of prime importance in fMRI
studies. Recent studies have reported that the temporal SNR
of BOLD [3.,4,11] and resting perfusion [9] EPI image data
decreases more slowly than the VR prediction (which
assumes that thermal noise dominates). Since temporal
SNR depends not only on thermal noise but is also
influenced by any processes leading to time course
variations, such as physiological fluctuations and scanner
instabilities, these studies concluded that changes in
reduction factor altered the relative contributions of thermal
and physiological noise components. For example, De Zwart
et al. [11] showed that their BOLD data were consistent with
a model in which the noise is expressed as the sum of a
thermal noise component that increased with reduction factor
and a physiological component that remained constant
across reduction factors.

In order to further investigate the origins of the temporal
SNR trends discussed above, BOLD and perfusion-based
fMRI data were acquired at three different reduction factors
(R=1, 2 and 3) using sensitivity encoding (SENSE) [10].
Cardiac and respiratory activity were recorded during data
acquisition and used to retrospectively remove physiologi-
cal noise from the data. This allowed a direct assessment of
the effects of these noise sources on various measures of
functional sensitivity and temporal SNR across reduction
factors. In the interests of isolating the effects of the
shortened readout on temporal SNR, temporal and spatial
resolution as well as TE were kept constant across reduction
factors, and experiments focused on a region of the brain
(the visual cortex), which does not suffer from extreme
geometric distortions.

2. Methods
2.1. Data acquisition

Five healthy adult subjects (three male; age range,
27-39 years) participated in the study after giving informed
consent. All data were acquired on a GE Signa Excite 3-T
whole-body system equipped with an eight-channel receive-
only head coil (MRI Devices, Gainesville, FL, USA). A
body coil was used for radiofrequency transmission.

High-resolution structural scans were acquired with a
magnetization prepared 3D fast spoiled gradient echo
sequence (TI 450 ms, TR 7.9 ms, TE 3.1 ms, flip angle
12°, FOV 250x250x160 mm, matrix 256x256x124).

Functional data were acquired using a PICORE QUIPSS
II pulsed ASL sequence [12,13] with dual gradient echo

spiral readout. Four 7-mm slices were positioned parallel to
the calcarine sulcus, and imaging parameters were as
follows: TR 2 s, TI1 600 ms, TI2 1500 ms, TE 9.1 and
30 ms, flip angle 90°, matrix 64x64, FOV 240 mm. Small
bipolar gradients (b=2 s/mm?) placed immediately before the
first echo were used to reduce signal from large vessels. The
visual stimulus consisted of a maximum contrast checker-
board flashing at 8 Hz, alternating with a blank screen (rest
state) at the same mean luminance as the checkerboard. The
stimulus was presented in a block design consisting of an
initial 40-s rest period, followed by four cycles of 20-s
flashing checkerboard/40-s rest. Each functional run lasted
4 min 40 s. Subjects were instructed to fixate on a small
square in the center of the screen that was visible throughout
each run.

For each subject, two functional runs were acquired at
each reduction factor (1, 2 and 3) in randomized order.
The readout window was 19.4 ms for R=1 (fully sampled
k-space) and was shortened by reducing the sampling
density in the radial direction to obtain reduction factors of
2 and 3 with readout windows of 9.7 and 6.5 ms,
respectively. In order to create coil sensitivity profiles for
image reconstruction, reference images in which k-space
was fully sampled were acquired for each reduction factor,
with the number of interleaves set to the reduction factor in
each case so as to produce images with similar distortions.

Cardiac and respiratory effort data were continuously
recorded throughout the scan session using a pulse oximeter
(InVivo, Orlando, FL, USA) and a respiratory effort
transducer (BIOPAC systems, Goleta, CA, USA). Scanner
timing pulse data were also recorded to enable synchroniza-
tion of the physiological data to the acquired images.

2.2. Data reconstruction

All data were reconstructed offline using the SENSE
iterative gridding approach designed for arbitrary k-space
trajectories [14], implemented in MATLAB (The Math-
works, Natick, MA, USA). A Kaiser—Bessel gridding kernel
of width 5, oversampling factor 2 and shape a=2.34 was
used [15], with 30 iterations. A small regularization term is
typically employed in SENSE reconstruction to ensure safe
convergence [16], but since the effect of regularization on
SNR properties is not clear [17], the current study used only
a minimal regularization term on the order of machine
precision. Although the fully sampled k-space images (R=1)
could be reconstructed using conventional methods, a
SENSE reconstruction ensures SNR optimization and
sensitivity correction and makes comparison between the
three reduction factors more straightforward. Coil sensitivity
maps were generated from the reference images.

2.3. Data analysis

The high-resolution anatomical data were segmented
using the FSL FAST image segmentation tool [18]. Gray and
white matter masks were created for each subject by
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selecting voxels containing at least 70% gray or white
matter, respectively. “Nonactivated” gray and white matter
regions of interest (ROIs) were defined by manually
delineating and excluding the visual cortex from the gray
and white matter masks. All ASL images were motion-
corrected by registration to the first fully sampled (R=1)
dataset using AFNI software [19], and the first four data
points were removed from each time course to allow for the
approach to the steady state.

Estimates of image SNR were calculated using the
approach described by Glover and Lai [20]. In short, a
new image series was formed by extracting the control
images from the ASL run. The even- and odd-numbered
images from this series were then separately averaged, and
the sum and difference of these average images was
calculated. The image SNR was calculated as the mean
value from the “nonactivated” ROI in the sum image divided
by the standard deviation over the same region in the
difference image. For each subject, the image SNR values
were normalized by the value obtained for R=1. The
differences between the normalized image SNR values
(n=5) for the R=2 and R=3 data and the thermal noise
predictions (0.71 and 0.58, respectively) were assessed using
two-tailed ¢ tests. For all statistical tests, P<05 was taken to
be significant.

Functional time series were calculated from the raw tag/
control image series as follows: perfusion time series were
created from a surround subtraction of the first echo data
(TE=9.1 ms), using a filter of the form (—0.5, 1, —0.5) [21].
BOLD time courses were created from a surround average of
the second echo data (TE=30 ms), using a filter of the form
(0.5, 1, 0.5)/2. Additional short-TE BOLD time courses
were created from a surround average of the first echo data in
order to investigate the effect of TE on temporal SNR trends.

Temporal SNR values were calculated voxelwise for the
perfusion, BOLD and short-TE BOLD time series, as the
ratio of the mean signal to the temporal standard deviation,
after removal of linear trends. These values were computed
with and without the application of physiological noise
reduction (see below for details of noise reduction). The
SNR values were normalized to the R=1 values and then
averaged over nonactivated gray and white matter ROIs to
generate average values for each subject. The differences
between the resulting normalized temporal SNR values
(n=5) for the R=2 and R=3 cases and the thermal noise
predictions (0.71 and 0.58, respectively) were assessed
using two-tailed ¢ tests. To assess the confounding effects
of any remaining functional activation in the nonactive
ROIs, a second set of temporal SNR values were calculated
after first regressing out any stimulus-related components
from the voxelwise data and then compared to thermal
noise predictions.

To assess the impact of SENSE on the detection of
functional activity, the functional perfusion and BOLD data
were modeled using a general linear model which included
regressors describing the stimulus function convolved with a

hemodynamic response function (gamma density function),
a constant term, a linear term and terms describing cardiac
and respiratory fluctuations. Physiological noise terms were
removed using a retrospective imaged based correction
method previously described by Glover et al. [22] and
adapted for use with arterial spin labeling data by Restom
et al. [23]. In order to compare the effect of different
acquisitions on the ability to detect functional activation,
F statistics were calculated on a pixelwise basis both with
and without the use of physiological noise reduction. Active
ROIs were created for a range of F' thresholds between 2 and
14 for the perfusion data and between 20 and 140 for the
BOLD data (the higher thresholds used for the BOLD data
reflect its higher intrinsic SNR). For each F threshold and
each functional scan, voxels exceeding the threshold and
having at least 1 neighboring voxel also above the threshold
were defined as active. Then, for each subject, an ROI was
defined as the union of the active voxels over the three
reduction factors. ROIs were defined with and without the
use of physiological noise reduction, and all ROIs had a
contribution of at least six active voxels from each reduction
factor. The mean F value for each reduction factor over
each ROI was calculated and expressed as a fraction of
the R=1 case. Differences between the mean F ratios for the
three reduction factors were assessed for significance using
paired ¢ tests.

In order to investigate the frequency distribution of the
energy in the noise for the three reduction factors, spectral
analyses were performed on the perfusion and BOLD time
series. Voxelwise power spectra were calculated after the
removal of the mean signal and linear trends and were
normalized to the area of the R=1 spectrum. For each
subject, spectra were averaged over the nonactivated gray
matter ROI and subsequently group averaged.

3. Results
3.1. Image SNR

Fig. 1 shows the normalized image SNR values for the
raw (A) first and (B) second echo data. The image SNR
values were not significantly (P>05) different from the
purely thermal noise prediction of a VR reduction in SNR
with reduced acquisition times, although the difference for
the R=3 first echo data was nearly significant (P=.06) with
the observed value being lower than the predicted value.

3.2. Temporal SNR

Representative temporal SNR maps from a single subject
are shown in Fig. 2. For both perfusion and BOLD images,
the temporal SNR visibly decreases as the reduction factor
increases.

Fig. 3 shows the normalized temporal SNR values as a
function of reduction factor for (A) gray matter perfusion
data, (B) gray matter BOLD data, (C) white matter BOLD
data, (D) gray matter short-TE BOLD data and (E) white
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Fig. 1. Mean normalized image SNR values for the first (A) and second (B) echo data. Dotted lines show the predicted values assuming a purely thermal noise

model (1/VR). Error bars show 1 standard deviation across subjects.

matter short-TE BOLD data, with (diamonds) and without
(squares) the application of physiological noise reduction.
White matter perfusion data are not reported since the
sequence parameters were not optimized to acquire reliable
white matter perfusion values. For the gray matter perfusion
data, the normalized SNR values are not significantly
different from the thermal noise model predictions (dotted

lines), with the exception of the R=2 values without noise
reduction, which exhibited significantly (P<03) higher
values than the theoretical prediction. The normalized
temporal SNR values for the gray matter BOLD data (with
and without physiological noise reduction) were signifi-
cantly higher (P<02) than the predicted values for both
acceleration factors. In contrast, the short-TE gray matter
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Fig. 2. Perfusion and BOLD temporal SNR maps from a representative subject. Data for each reduction factor from a single slice are shown.
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Fig. 3. Normalized temporal SNR values for gray matter perfusion (A), gray matter BOLD (B), white matter BOLD data (C), short-TE gray matter BOLD (D) and short-TE white matter BOLD (E). Values are shown
with (diamond) and without (squares) physiological noise reduction. Error bars indicate one standard deviation over subjects. The dotted lines show the expected normalized temporal SNR given a R relationship
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Fig. 4. Normalized mean F values within active ROIs as a function of F threshold for the perfusion data without (A) and with (B) noise reduction and the BOLD
data without (C) and with (D) noise reduction. All values are expressed relative to the R=1 data, and the error bars show one standard deviation over subjects.

BOLD values were not significantly different from the
theoretical prediction. For the white matter BOLD and short-
TE BOLD values, the R=2 values were not significantly
different than the predicted values, while the R=3 values
were significantly lower (P<04) than predicted. The data
shown were obtained with the nonactivated ROI defined in
the Methods section. Very similar trends were observed for
the data after removal of stimulus-related components, with
the exception of the perfusion R=2 values with noise
reduction, which were slightly higher than the theoretical
prediction (P<05) when the stimulus-related components
were removed.

3.3. Functional sensitivity

The mean F statistics, normalized to the R=1 data, are
shown in Fig. 4 for the perfusion and BOLD data, analyzed
both with and without physiological noise reduction. For the
perfusion data, the mean F' values show a dependence on the
F threshold, with the mean F value for the undersampled
data decreasing relative to the R=1 data as the F threshold
increases. The best fit line for each data set has a slope that is
significantly (P<01) different from zero, with mean slopes
[in units of (100*normalized F value)/(F threshold)] of
—1.2+0.03 and —1.6+0.09 for the R=2 and R=3 cases,
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Fig. 5. Group-averaged power spectra for the perfusion time series (A) and BOLD time series (B). Spectra were averaged over the nonactive gray matter ROIs,
after physiological noise reduction. The small peaks at ~0.016 Hz represent residual activation that remains after removal of the visual cortex voxels. The mean
spectral power over the range 0.025-0.075 Hz for the perfusion and BOLD data are shown in (C) and (D), respectively, normalized to the R=1 data. Error bars
indicate one standard deviation over subjects, and the dotted lines show the expected values given a thermal noise model. Significant differences from the model

are indicated by an asterisk (P<05).

respectively, with physiological noise reduction and corre-
sponding values of —1.6+0.1 and —1.5+0.09 without noise
reduction. Although the mean F for the undersampled data is
significantly less than the R=1 case for all F thresholds, there
is no significant difference between the R=2 and R=3 data at
any F thresholds, with or without noise reduction.

In contrast, the BOLD data are relatively more stable over
a wide range of F thresholds. Although the slopes of the best
fit lines are significantly different to zero in all cases except
that of R=2 with physiological noise reduction, the slopes are
relatively small (0.0034+0.003 and —0.03+0.002 for the R=2
and R=3 cases, respectively, with physiological noise

reduction and 0.01£0.003 and —0.02+0.003 without noise
reduction). The R=2 and R=3 data are significantly different
from each other and from the R=1 data at all F' thresholds
(P<.004) both with and without noise reduction. The square
root of the mean F statistics (used as a measure of SNR) for
the R=2 and R=3 cases were not significantly different to the
gray matter BOLD temporal SNR values reported in Fig. 3B.

3.4. Spectral analysis

Fig. 5 shows the power spectra for the (A) perfusion and
(B) BOLD time series, calculated after physiological noise
reduction within the nonactivated gray matter ROIs. Both the
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perfusion and the BOLD spectra exhibit a zero at 0.25 Hz,
reflecting the effects of the low pass filtering inherent in the
surround subtraction and average procedures [21]. Small
peaks are evident at ~0.016 Hz, representing residual
functional activation that remains within the nonactive
ROIs. Fig. 5C shows the mean power in the perfusion
spectra over a frequency range (0.025-0.075 Hz; denoted by
dashed vertical lines in panels A and B), chosen to exclude
those frequencies affected by residual functional activation,
as well as those dominated by filter effects. The thermal
noise model predicts a linear relationship between spectral
power and acceleration factor, and the calculated values are
not significantly different from the predicted values (P=.3 for
R=2 and P=.5 for R=3). In contrast, the power in the BOLD
spectra (shown in Fig. 5D) increases much more slowly than
the thermal noise prediction (P<02 for both cases).

4. Discussion

The use of parallel imaging techniques allows the
reduction of the readout window by a factor of R if spatial
resolution is kept constant. In cases in which the dominant
source of noise is thermal, we would expect to observe an
SNR reduction of gvR, where g is the noise amplification
factor. In this study, we have investigated the SNR
characteristics and functional sensitivity of perfusion and
BOLD fMRI data acquired with SENSE. The image SNR
measured in the raw data (both first and second echoes) did
not differ significantly from a VR trend, consistent with
recent work showing that the noise amplification factor is
spatially homogeneous and close to unity for SENSE
reconstruction with a spiral trajectory and an eight-channel
wraparound head coil [24].

For the perfusion data, we found a decrease in temporal
SNR with increasing acceleration factor (both prior to and
after physiological noise reduction). Before the removal of
cardiac and respiratory noise, the temporal SNR was
significantly higher than the predicted value for the R=2
case, but not for the R=3 case. The greater-than-predicted
temporal SNR for R=2 tends to indicate a decrease in the
contribution of cardiac and respiratory noise as the readout
window is shortened from R=1 to R=2, while the agreement
with prediction at R=3 may reflect a balance between a
reduction in physiological noise with shorter readout
window and increased noise amplification at the higher
reduction factor (consistent with the lower temporal SNR
values observed in white matter at R=3 that are discussed
below). After noise reduction, the observed SNR values
were not significantly different from the predicted values,
suggesting that thermal noise is the dominant noise source
after removal of cardiac and respiratory signal components.
In contrast, Wang et al. [9] found that the temporal SNR of
their resting perfusion time series was slightly improved
(R=2) or remained the same (R=3) with the use of parallel
imaging. The discrepancy in results may be due to the use

of shorter TEs as the acceleration factor was increased in
reference [9]. The use of a shorter TE with higher
acceleration factors can offset the expected temporal SNR
reduction by increasing the perfusion time series signal
(i.e., less signal decay) and decreasing physiological noise
contributions [25]. In the present study, we avoided this
confounding effect by using constant TE across accelera-
tion factors.

In agreement with prior studies, the temporal SNR
values of the gray matter BOLD time series prior to
physiological noise reduction were found to be significantly
greater than the predicted values [3,4,11]. In contrast to the
results observed with the perfusion data, the gray matter
temporal SNR values after physiological noise reduction
remained significantly higher than the predicted values,
suggesting the presence of additional noise components not
accounted for by the respiratory and cardiac regressors. As
shown in Fig. 5D, the power of low frequency signal
components (below ~0.1 Hz) increases more slowly than
predicted with acceleration factor, consistent with the
higher than expected temporal SNR values at the higher
acceleration factors.

Low-frequency fluctuations in the BOLD signal have
been widely reported and are often referred to as 1/f noise
due to the resulting shape of the frequency spectrum [26,27].
A primary source of these fluctuations is resting-state
variations in T> due to naturally occurring metabolic
changes that are not specifically related to a task. These
fluctuations have been used to investigate the “resting-state
network” of neuronal connectivity in the brain [27]. They
have been shown to be most prominent in gray matter [26],
to peak at TE~T5 (since they rely upon the same mechanism
as the BOLD effect) and to have much greater power than
respiratory and cardiac fluctuations in BOLD-weighted
images [25]. In the current study, these low frequency
fluctuations in T> manifest as fluctuations in the signal
intensity of the raw tag and control ASL images. As the
BOLD time series is formed by taking a surround average of
the tag and control time series, these low frequency
components are not attenuated in the BOLD time series
[21]. In contrast, the perfusion time series is created by
taking a surround subtraction of the raw data. As the
surround subtraction operation is equivalent to demodula-
tion followed by low pass filtering [21], low-frequency
fluctuations in the raw data are shifted to high frequencies
and then attenuated. As a result, low frequency fluctuations
in the raw data are not a dominant noise source in the
perfusion time series.

The temporal SNR values of the gray matter short-TE
BOLD time series were not significantly different to the
predicted values. In addition, the temporal SNR values of the
white matter BOLD and short-TE BOLD time series were
either not significantly different from (R=2) or significantly
lower (R=3) than the predicted values. These findings are
consistent with the minimal presence of physiological noise
components (cardiac, respiratory and low-frequency
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fluctuations) in both the short-TE gray matter BOLD data
and the white matter data. The lower white matter values
obtained for R=3 are consistent with a noise amplification
that is slightly greater than unity, as was also observed in the
image SNR results.

The mean F values measured within an active ROI were
used to assess the functional sensitivity of the fMRI data. As
expected, the BOLD data showed a reduction in the mean F
value for the R=2 and R=3 data relative to the fully sampled
data, and this was very consistent over a wide range of F
thresholds. The corresponding SNR decrease was estimated
using the square root of the mean F values; a comparison
between these functional SNR decreases and the measured
temporal SNR decreases found no significant difference.
This suggests that the BOLD functional sensitivity can be
predicted by the temporal SNR measurements.

The perfusion data also showed a reduction in the mean
F for the undersampled relative to the fully sampled data.
However, the reduction in the mean F was found to
significantly decrease with an increase in the F threshold
used to determine active voxels. This most likely reflects
the fact that, for the perfusion data, we are operating in a
relatively low SNR regimen. As the F threshold was
increased, the relative fraction of voxels within the active
ROI from the R=2 and R=3 reduction factors showed a
steady decrease, resulting in a drop in the ROI-averaged F
statistics at these reduction factors. This was not the case
for the BOLD data where the relative contribution to the
active ROI from the three reduction factors remained fairly
stable (data not shown), reflecting the higher SNR of the
BOLD data. The temporal SNR measurements cannot
therefore be used to predict the functional sensitivity of
the perfusion data, since the criteria for ROI have a sig-
nificant influence.

Finally, it is worth noting that comparisons between
fMRI studies employing parallel imaging techniques are
not straightforward. The brain region being investigated (in
particular whether artifacts related to long readouts are
present), the acquisition technique (e.g., EPI vs. spiral), the
parallel imaging method employed and the specific
reconstruction parameters used must all be taken into
account. The reconstruction parameters are particularly
important; our group has recently shown [17] that the
regularization term typically included in SENSE recon-
struction [16] can have a significant effect on the expected
SNR characteristics of the data. In essence, the inclusion of
a regularization constraint is in some ways equivalent to
introducing a level of smoothing that varies with reduction
factor and can therefore directly impact SNR measures. In
this study, we used a minimal regularization term with the
aim of minimizing bias in our results. However, it is likely
that most scanner manufacturer reconstruction software
employs regularization to ensure convergence during
iterative reconstruction methods, and full details must
therefore be given in order that adequate comparisons can
be made.
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